后台回复“面试” “资料” 领取一份干货,数百技术面试手册等你 开发者技术前线 ,汇集技术前线快讯和关注行业趋势,大厂干货,是开发者经历和成长的优秀指南。
微软发布史上最大AI模型:170亿参数横扫各种语言建模基准,将用于Office套件
计算机技能需求最新排名:Python 仅排第 3,第 1 你肯定猜不到PyCharm + Docker:打造最舒适的深度学习炼丹炉
我深夜用 Python 跑神经网络,只为关掉台灯!
2020 必学的10大顶级 Python 库
点击“开发者技术前线”,选择“星标🔝”
在看|星标|留言, 真爱
AlphaGo战胜了人类最强棋手,但前提是它先学会了人类棋谱,离不开人类指导。
接着谷歌又推出了AlphaGo Zero,只让AI知道围棋规则,从零开始学下棋,结果再次登上棋艺顶峰。
AI既然能从零学习围棋,是否可以从零开始摸索机器学习算法?当然可以,谷歌大脑团队最新的研究成果已经做到了。
谷歌将这种技术称之为AutoML-Zero,意为“从零开始的自动机器学习”,已经在GitHub开源,并在Arxiv上提交了论文。
而且这一研究还是来自谷歌大脑的Quoc V.Le大神之手。
AutoML-Zero仅使用基本数学运算为基础,从一段空程序开始,即可自动发现解决机器学习任务的计算机程序。
AutoML是一种实现从数据集到机器学习模型的自动化方法,让你无需高深专业知识,就能自动部署ML模型。
虽说是自动,但现阶段的AutoML还要对搜索空间进行很大的限制,这使我们在使用AutoML的时候仍然需要一些专业知识去设计神经网络的层。
谷歌的目标是让AutoML可以走得更远,仅仅使用基本的数学运算作为构建块,就可以自动发现完整的机器学习算法,进一步降低机器学习的门槛。
尽管AutoML-Zero巨大的搜索空间充满挑战性,但进化搜索还是能发现具有梯度下降的线性回归算法、具有反向传播的二层神经网络。
值得注意的是,可以AutoML-Zero的进化过程也是一个不断“发明”的过程解释进化的算法,它已经找到了双线性交互、权重平均、归一化梯度、数据增强等技术,甚至在某些情况下还发现了类似Dropout的算法。
下面我们先来看看,AutoML在CIFAR-10的二元分类任务上是如何一步步进化的。它首先发现了线性回归,然后找到了损失函数、梯度下降。
随着训练的进行,出现了随机学习率、随机权重、激活函数ReLU、梯度归一化,最后得到了84.06 ± 0.10%正确率的终极算法。
只训练一个二元分类结果还不太具有说服力,作者又用3种极端情况考察了Auto ML。
首先,当样本数量很少的时候,在80个样本上运行100个epoch。AutoML竟然进化出另一种适应性算法,给输入数据加上了噪声,并开始使用Dropout来训练模型。
在快速训练的情况下,只有800个样本和10个epoch,结果导致学习率衰退反复出现,这
是一个我们在快速训练训练机器学习模型中常见的策略。
至于多类别的分类问题,作者使用了CIFAR-10数据集的所有10个类。AutoML进化算法有时会使用权重矩阵的变换平均值作为学习速率。甚至作者也不知道为什么这种机制会更有利于多类任务,虽然这种结果在统计学上是显著的。
上面的所有测试整个过程中,人类没有告诉程序任何先验的机器学习知识。
现在谷歌将AutoML-Zero的程序提交到GitHub,普通电脑只需5分钟就能体验一下它的实际效果。
安装好Bazel后,将代码下载到本地,运行其中的demo程序:
git clone https://github.com/google-research/google-research.git
cd google-research/automl_zero
./run_demo.sh
这个脚本在10个线性任务上运行进化搜索。每次实验后,它都会评估在100个新的线性任务中发现的最佳算法。一旦算法的适应度大于0.9999,就选择该算法作为最终结果,将代码打印在屏幕上。
在普通电脑上使用CPU在5分钟内就能发现类似于梯度下降进行线性回归的程序:
found:
def Setup():
s3 = -0.520936
s2 = s2 * s3
s2 = dot(v1, v1)
v2 = s2 * v1
s2 = s3 * s2
v1 = s0 * v2
s2 = s0 - s3
s2 = -0.390138
v2 = s2 * v0
s1 = dot(v1, v0)
def Predict():
s2 = -0.178737
s1 = dot(v1, v0)
def Learn():
s1 = s1 * s2
s3 = s3 * s2
s2 = s0 * s2
s1 = s1 - s2
v2 = s1 * v0
v1 = v2 + v1
v2 = s3 * v0
v1 = v2 + v1
由人工设计的ML算法是,有兴趣的话,你可以比较这两段程序的差异。
def Setup():
s2 = 0.001 # Init learning rate.
def Predict(): # v0 = features
s1 = dot(v0, v1) # Apply weights
def Learn(): # v0 = features; s0 = label
s3 = s0 - s1 # Compute error.
s4 = s3 * s1 # Apply learning rate.
v2 = v0 * s4 # Compute gradient.
v1 = v1 + v2 # Update weights.
这篇文章的四位作者分别是:Esteban Real、Chen Liang、David R. So以及谷歌大脑的大神Quoc V.Le。
前两位都是有物理背景的博士生。Esteban Real毕业于哈佛大学,拥有物理学士学位和神经科学博士学位。他的研究方向是视网膜的神经编码。
Chen Liang毕业于北京大学物理系,之后获得了西北大学的人工智能和机器学习博士学位,现在是谷歌大脑的一名研究员,研究方向是强化学习、NLP和AutoML。
论文地址:
https://arxiv.org/abs/2003.03384
GitHub地址:
https://github.com/google-research/google-research/tree/master/automl_zero
在2D图像中做3D目标检测很难?
现在,拿着一部手机就能做到,还是实时的那种。
这就是谷歌AI今天发布的MediaPipe Objectron,一个可以实时3D目标检测的pipeline。
分开来看:
MediaPipe是一个开源的跨平台框架,用于构建pipeline来处理不同模式的感知数据。
Objectron在移动设备上实时计算面向对象的3D边界框。
日常生活中的物体,它都可以检测,来看下效果。
它可以在移动端设备上,实时地确定物体的位置、方向和大小。
这个pipeline检测2D图像中的物体,然后通过机器学习模型,来估计它的姿态和大小。
那么,它具体是怎么做到的呢?
我们知道,3D数据集相对于2D来说,非常有限。
为了解决这个问题,谷歌AI的研究人员使用移动增强现实(AR)会话数据(session data),开发了新的数据pipeline。
目前来说,大部分智能手机现在都具备了增强现实的功能,在这个过程中捕捉额外的信息,包括相机姿态、稀疏的3D点云、估计的光照和平面。
为了标记groud truth数据,研究人员构建了一个新的注释工具,并将它和AR会话数据拿来一起使用,能让注释器快速地标记对象的3D边界框。
这个工具使用分屏视图来显示2D视频帧,例如下图所示。
左边是覆盖的3D边界框,右边显示的是3D点云、摄像机位置和检测平面的视图。
注释器在3D视图中绘制3D边界框,并通过查看2D视频帧中的投影来验证其位置。
对于静态对象,只需要在单帧中注释一个对象,并使用来自AR会话数据的ground truth摄像机位姿信息,将它的位置传播到所有帧。
这就让该过程变得非常高效。
为了提高预测的准确性,现在比较流行的一种方法,就是通过合成的3D数据,来“填充”真实世界的数据。
但这样往往就会产生很不真实的数据,甚至还需要大量的计算工作。
谷歌AI就提出了一种新的方法——AR合成数据生成 (AR Synthetic Data Generation)。
这就允许研究人员可以利用相机的姿势、检测到的平面、估计的照明,来生成物理上可能的位置以及具有与场景匹配的照明位置 。
这种方法产生了高质量的合成数据,与真实数据一起使用,能够将准确率提高约10%。
为了达到这个目的,研究人员建立了一个单阶段的模型,从一个RGB图像预测一个物体的姿态和物理大小。
模型主干部分有一个基于MobileNetv2的编码器-解码器架构。
还采用一种多任务学习方法,通过检测和回归来共同预测物体的形状。
对于形状任务,根据可用的ground truth注释(如分割)来预测对象的形状信号;对于检测任务,使用带注释的边界框,并将高斯分布拟合到框中,以框形质心为中心,并与框的大小成比例的标准差。
检测的目标是预测这个分布,它的峰值代表了目标的中心位置。
回归任务估计边界框8个顶点的2D投影。为了获得边界框的最终3D坐标,还利用了一个成熟的姿态估计算法(EPnP),可以在不知道物体尺寸的前提下恢复物体的3D边界框。
有了3D边界框,就可以很容易地计算出物体的姿态和大小。
这个模型也是非常的轻量级,可以在移动设备上实时运行。
在移动端设备使用这个模型的时候,由于每一帧中3D边界框的模糊性,模型可能会发生“抖动”。
为了缓解这种情况,研究人员采用了最近在“2D界”发布的检测+跟踪框架。
这个框架减少了在每一帧上运行网络的需要,允许使用更大、更精确的模型,还能保持在pipeline上的实时性。
为了进一步提高移动pipeline的效率,每隔几帧只让运行一次模型推断。
最后,这么好的项目,当然已经开源了!
戳下方传送门链接,快去试试吧~
GitHub项目地址:
https://github.com/google/mediapipe/blob/master/mediapipe/docs/objectron_mobile_gpu.md
谷歌AI博客:
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
后台回复“面试” “资料” 领取一份干货,数百技术面试手册等你 开发者技术前线 ,汇集技术前线快讯和关注行业趋势,大厂干货,是开发者经历和成长的优秀指南。