AI唱歌之终极喂饭教程 - SVC的极限就在这了
最近感觉AI文本、AI绘图、AI视频、AI 3D都没啥惊喜的项目了。
于是我又开始研究起了AI声音。
前几天刚发了一个中文声音克隆的TTS项目 - BertVits2
然后昨天又看到群里好朋友一直在问用SVC做AI唱歌的事,但是没人理,那怎么行,所以我就来了,英雄登场。
这篇文章,为我的好朋友而写。
正好,离上次写SVC的教程,也快过了整整8个月的时间了,有兴趣想考古的可以去看看,虽然它已经没啥蛋用了:
我把我的声音训练成了AI模型,并让它唱了一首歌...(附超全面教程,你奶奶看了都会用)
当时还有很多问题,比如SVC自己的版本,高音部分很容易哑音、电流有点严重、音色不好、咬字不好等一堆问题。
而我的教程里,更是有很多错误,比如数据集的处理、人声分离的处理等等。
AI一天,人间一年。
所以到了今天,我也打算再摸一下SVC效果的极限,写一个SVC的超详细的教程,让大家有手就行,不用任何修音,都能做出目前最好的AI唱歌的效果。
先给大家听一下,我把我的声音训练成了模型后,唱《模特》和《王妃》的效果。
这首歌直接模型直出,没有任何后期没有任何修音,具体什么水平,各位看官可以自己评判。
话不多说,教程开始。
整体分为4步。
数据集的准备与处理。
主模型的训练。
最终推理与合成。
保存模型下次使用。
每一步我都会详细的说明,把我趟过的所有坑,一一写清楚,那毕竟,都是血和泪。
OK,开始吧。
一. 数据集的准备与处理
我一直说的一句话是:AI声音,90%的效果都是由数据集决定的。
所以,数据集的好坏,跟你最后的效果,呈绝对的正比。
这里我多说一句,也是我之前教程的错误:
正常说话数据和唱歌数据,绝对绝对绝对不要混用!
你要那种正常说话比如念台词的SVC模型,你就传1个小时说话的干声。
你要是做AI唱歌的SVC,你就传1个小时覆盖了低中高音域的唱歌的干声。
不要混用,效果很差!
同时,录音的时候,绝对要找个安静的地方,最好是类似录音室、直播间这种有吸音棉的地方,因为墙壁会反弹声音,会让声音有一点点混响的感觉。
收音的设备一定要好一点,用耳机或者麦,别对着手机就唱了。
音域一定要广,建议唱个4、5首超高音的歌,比如死了都要爱之类的,可以跑调,无所谓,你拼命唱上去就行了。反正只要你录一次,坚持一下,很快就完事。
录完了以后,可以再扔到剪映里面优化一下。把响度统一、人声美化(开到50)、音频降噪全勾上。
你的一手数据集就算完事了。
接下来是切分数据集。因为你直接扔1小时的数据集直接拿去训练,显存必爆,所以我们得做一个切分。这里还是推荐使用Audio Slicer(音频切分)将其剪裁成10秒~20秒左右的分段文件,你可以对着我公众号回复"SVC2024",就有Audio Slicer的下载链接了。
我们把Audio Slicer下载下来,解压后打开Slicer-gui。
然后把Minimun Length那一项改成8000,把我们需要处理的音频直接拖到左边窗口,在右下角选择输出路径。
同时此处注意,任何路径和文件命名,都不要带有中文和特殊的比如空格之类的字符!!!
扔进去以后,我们直接点最右下角的Start。速度非常块,十几秒就切割完了。我们去我们选择的输出路径就能看到我们的文件。
然后我们选择时长排序,把低于2秒的,超过25秒的都给删了。
至此,前期的数据集就算是处理完毕了~
二. 主模型的训练
有了优质的数据集之后,我们正式开始模型的训练。
打开国际炼丹场AutoDL:https://www.autodl.com/home
没注册的自己注册去,我就不管了。
在租卡页面,租一台北京C区的V100 32G。
然后去下面的镜像tab,在社区镜像中,搜so-vits-svc-4.1。在弹出来的搜索联想框中,选用v12版本,在此文发出后,镜像依然可能会持续升级,如果在你使用的时候,出现了比v12还要高的版本,请使用你能看到的最高的版本。
都完事后,点立即创建。
你就会看到你的云机器在创建过程了,第一次创建拉取云上的镜像时间会久一点点,多等等就好。
当机器状态变成运行中的时候,点JupyterLab,进入操作系统。
正常应该是直接打开了记事本的这个页面,如果你进来发现是空的,没有任何文字,请双击一下点开这两个记事本文件,就有了。
你如果想看一下具体的详情学一些知识,可以把这个有一堆文字的记事本看完,但是如果你懒得设置这么多东西看这么多字,可以直接点quickly这个笔记本,我们直接快速开始。
进入quickly这个笔记本后,点击第一个代码块,也就是:#移动项目文件夹到数据盘以节约系统盘空间。然后点击上方的三角图标,运行代码块。
此时注意一下右上角的圆圈,空心圆则代表机器目前空闲状态没有正在运行的东西,实心圆则代表系统正在运行中。你运行代码块后,圆圈会从空心圆变成实心圆,运行完成后,实心圆会变回空心圆。
第一步移动项目文件夹运行完成之后,我们在左边的文件栏,进入这个路径:autodl-tmp/so-vits-svc/dataset_raw,在这个文件夹里,新建一个文件夹,比如我叫Khazix,我那就新建一个Khazix的文件夹。
再点开这个Khazix的文件夹,把我们第一步处理完的所有数据集直接拖过来,传上去。(PS:我知道传压缩包再用解压命令速度更快,但是不是所有人都懂linux解压命令,所以别杠,我更喜欢让普通人都懂都直观没有思考成本的方式去写教程。)
当这个蓝条跑完并消失后,你的数据就已经全部上传成功了。
回到右边的记事本,预处理这四部,挨个运行就行,注意下右上角圆圈状态,运行一个后,圆圈状态从实心圆变成空心圆后,再运行下一个代码块。
前三步:#进入项目文件夹、#重采样、#默认使用带响度嵌入的768成功运行后,就是我截图的这个运行反馈。
第四步:#默认使用rmvpe且带浅扩散,会跑的旧一点并且有进度条,运行成功以后,是这样的:
OK,所有的预处理已经全部完成,接下来开始正式训练。
在训练这部分有两个,一个叫浅扩散模型,一个叫主模型。主模型是核心,也是需要先训练的,浅扩散模型属于扩展模型,能增强效果,但是会削弱不少音色。
所以只进行主模型训练就行,所有的训练和推理都不要直接点笔记本的代码块直接运行了,不好管理。
保持左边路径是autodl-tmp/so-vits-svc里,点击右上角+号,在新页面中选择终端。
然后在命令行中输入命令:
python train.py -c configs/config.json -m 44k
如果报错,请先看看你是不是在autodl-tmp/so-vits-svc新起的终端。
正式训练后,就长这个样子,左边的那些Epoch是轮数,没啥大用,主要看右边的步数,1w步左右可以去听,2w步差不多就可以用了,最多不要超过6w步。
至于如何判定模型效果好不好,在我实验下来,任何参数都没啥绝对的意义。
请记住,用你的耳朵,你的耳朵,就是你最好的分辨器。1w步后的每个模型,用你的耳朵,推理后,去听。
三. 最终推理与合成
模型差不多了以后,可以一边训练,一遍开启推理的WebUI界面,去做歌,试着听一听。
跟训练的步骤类似,保持左边文件夹保持左边路径是autodl-tmp/so-vits-svc里,点击右上角+号,在新页面中选择终端。新建一个命令行页面。
输入代码:
python app.py
等一会后,你就能拿看到两个链接冒出来了。
只看第一个这个http://127.0.0.1:6006链接就行。
先别复制打开,因为你打不开。
回到容器实例首页。点击自定义服务。
就会弹出来弹窗,按的教程和要求来就行。
等把代理挂上以后,你就能打开http://127.0.0.1:6006这个链接了。
打开以后,3个挨个点,模型那块选择具体是哪个模型。配置文件默认是 no_config,不要忘了点开换成config.json。最后再点一下加载模型。
加载完了以后,你就可以看到反馈了。
扩散模型和聚类模型是两个扩展模型,聚类模型你炼说话模型时有用,会增加咬字,唱歌模型没啥大用,不用管,浅扩散模型可以修复部分哑音,但是会出现一些音色泄露问题,你数据集弄好。也不用管。
再下面,就是要传你的音乐的地方了。
一般流程是:下载音乐 - 分离人声与伴奏 - 人声推理 - 最后推理完的人声与伴奏合成。
下载音乐这块我推荐一个免费的贼牛逼的音域下载网站:
https://tools.liumingye.cn/music
没什么可说的,除了良心,还是良心,且用且珍惜。
下载下来以后,去剪映里分离人声和伴奏。
我其实想了很久,到底推荐大家用UVR5的MDX23C还是剪映。
最后我觉得还是剪映吧,剪映这个人声分离,能达到UVR5的MDX23C的90%左右水平,主要是真的有手就行,点一下就完事。。。。。。而你要研究UVR5的那些模型,能干吐你,而且大概率你显卡也跑不动。
所以在剪映里,你分离两次,一次仅保留人声、一次仅保留背景音,还可以把那个人声再人声美化一下,最后,再把人声的那条单独导个WAV出来。
注意,出来的人声WAV还是没法直接用,因为里面可能会带混响和和声。所以还是要用UVR5的VR 5_HP去一下混响和和声。
你直接对着我公众号回复"SVC2024",就有UVR5的下载包了。
正常安装完打开以后。按照我图片里的设置,把参数改一下,然后点那个Start。跑之前,记得把剪映关了,要不然很容易爆显存。
分离完以后,你就有一个非常棒的干声了。
最后回到SVC的WebUI页面,把你的干声直接传上去,传5分钟的都没事,不用担心爆显存。然后把这个f0预测器,换成rmvpe。其他的什么都不管,直接点击音频转换。
几十秒后,你的歌曲就替换完成了。
现在,你就是这首歌的,唱歌人了。
(总感觉这话说的,像破壁人。。。)
最后,去剪映里自己把人声和伴奏音轨叠一起,导出就完事了。这个我就不教了。要不然文章又奔着5000字去了。
四. 保存模型下次使用
云端的一大弊端就是,你弄完了,不及时保存的话,就全部白弄了。
所以,一定要把模型保存下来。
来到这个路径:
autodl-tmp/so-vits-svc/logs/44k
你就能看到你的模型了,你可以把这个两个模型下载到本地,万无一失的留着。下载再用的时候,直接再开台机子,把这两玩意,传到同样的文件夹里,就OK了。
写在最后
说实话,做教程还是心累,因为默认得把所有人都当小白,尽量把所有我趟过的坑都讲到,让大家避免跟我犯同样的错误。还得写的不长篇大论,让大家跟着有手就行的就能做下去。
但是希望花费的这些时间、精力。
能对大家有一些用处。
但行好事,莫问前程。
那前路也永远会有意外的惊喜等着你。
以上,既然看到这里了,如果觉得不错,随手点个赞、在看、转发三连吧,如果想第一时间收到推送,也可以给我个星标⭐~谢谢你看我的文章。