其他
单细胞转录组基础分析七:差异基因富集分析
此前的分析我们按转录特征把细胞分成了很多类别,例如seurat聚类分析得到的按cluster分类,singleR分析得到的按细胞类型分类,monocle分析得到的按拟时状态(state)分类。不同的细胞类型之间,有哪些表达差异基因呢,这些差异基因有特别的意义吗?
基因差异表达分析
library(Seurat)
library(tidyverse)
library(patchwork)
library(monocle)
library(clusterProfiler)
library(org.Hs.eg.db)
rm(list=ls())
dir.create("enrich")
scRNA <- readRDS("scRNA.rds")
mycds <- readRDS("mycds.rds")
#比较cluster0和cluster1的差异表达基因
dge.cluster <- FindMarkers(scRNA,ident.1 = 0,ident.2 = 1)
sig_dge.cluster <- subset(dge.cluster, p_val_adj<0.01&abs(avg_logFC)>1)
#比较B_cell和T_cells的差异表达基因
dge.celltype <- FindMarkers(scRNA, ident.1 = 'B_cell', ident.2 = 'T_cells', group.by = 'celltype')
sig_dge.celltype <- subset(dge.celltype, p_val_adj<0.01&abs(avg_logFC)>1)
#比较拟时State1和State3的差异表达基因
p_data <- subset(pData(mycds),select='State')
scRNAsub <- subset(scRNA, cells=row.names(p_data))
scRNAsub <- AddMetaData(scRNAsub,p_data,col.name = 'State')
dge.State <- FindMarkers(scRNAsub, ident.1 = 1, ident.2 = 3, group.by = 'State')
sig_dge.State <- subset(dge.State, p_val_adj<0.01&abs(avg_logFC)>1)
差异基因GO富集分析
#差异基因GO富集分析
ego_ALL <- enrichGO(gene = row.names(sig_dge.celltype),
#universe = row.names(dge.celltype),
OrgDb = 'org.Hs.eg.db',
keyType = 'SYMBOL',
ont = "ALL",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
ego_all <- data.frame(ego_ALL)
write.csv(ego_all,'enrich/enrichGO.csv')
ego_CC <- enrichGO(gene = row.names(sig_dge.celltype),
#universe = row.names(dge.celltype),
OrgDb = 'org.Hs.eg.db',
keyType = 'SYMBOL',
ont = "CC",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
ego_MF <- enrichGO(gene = row.names(sig_dge.celltype),
#universe = row.names(dge.celltype),
OrgDb = 'org.Hs.eg.db',
keyType = 'SYMBOL',
ont = "MF",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
ego_BP <- enrichGO(gene = row.names(sig_dge.celltype),
#universe = row.names(dge.celltype),
OrgDb = 'org.Hs.eg.db',
keyType = 'SYMBOL',
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.01,
qvalueCutoff = 0.05)
ego_CC@result$Description <- substring(ego_CC@result$Description,1,70)
ego_MF@result$Description <- substring(ego_MF@result$Description,1,70)
ego_BP@result$Description <- substring(ego_BP@result$Description,1,70)
p_BP <- barplot(ego_BP,showCategory = 10) + ggtitle("barplot for Biological process")
p_CC <- barplot(ego_CC,showCategory = 10) + ggtitle("barplot for Cellular component")
p_MF <- barplot(ego_MF,showCategory = 10) + ggtitle("barplot for Molecular function")
plotc <- p_BP/p_CC/p_MF
ggsave('enrich/enrichGO.png', plotc, width = 12,height = 10)
差异基因kegg富集分析
genelist <- bitr(row.names(sig_dge.celltype), fromType="SYMBOL",
toType="ENTREZID", OrgDb='org.Hs.eg.db')
genelist <- pull(genelist,ENTREZID)
ekegg <- enrichKEGG(gene = genelist, organism = 'hsa')
p1 <- barplot(ekegg, showCategory=20)
p2 <- dotplot(ekegg, showCategory=20)
plotc = p1/p2
ggsave("enrich/enrichKEGG.png", plot = plotc, width = 12, height = 10)
获取帮助
本教程的目的在于把常用的单细胞分析流程串起来,适合有一定R语言基础的朋友参考。分析原理和代码我没有详细解释,官网有详细的教程和权威的解释,翻译好的中文教程也有多个版本,有兴趣的可以搜索一下。如果您学习本教程有一定困难,可以分享此篇文章到朋友圈,截图微信发给Kinesin(文末二维码),我会抽时间组群直播讲解单细胞数据分析的全过程。本专题所用的软件、数据、代码脚本和中间结果,我打包放在了百度云上,需要的朋友添加Kinesin微信索取。