查看原文
其他

圆锥曲线7大题型汇总+必考知识点

提高数学,关注 品数学 2022-04-27


了解我们


品数学之道——数学知识归纳
品数学之术——数学解题方法
品数学之礼——数学资料下载
品数学之美——数学美图合集
品数学之味——趣味数学漫谈
(点击蓝字,查看往期精彩内容)


2020届高三数学“小题速练”60套(Word版)

2020届高三数学“大题精练”30套(Word版)
历年高考数学真题高频考点精编52套(word版)
2020届最新各地高三数学模拟题汇编(word版)



学好圆锥曲线的几个关键点


1、牢记核心知识点


核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。


2、计算能力与速度


计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。

当然也要掌握一些解题的小技巧,加快运算速度。


3、思维套路


拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。老师建议:山重水复疑无路,没事你就算两步。大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。

一设:设直线与圆锥曲线 的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。

二联立:通过快速计算或者口算得到联立的二次方程。

三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。

走完三部曲之后,在看题目给出了什么条件,要求什么。例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的 斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。


4、题型总结


圆锥曲线中常见题型总结


1、直线与圆锥曲线位置关系


这类问题主要采用分析判别式,有

△>0,直线与圆锥曲线相交;

△=0,直线与圆锥曲线相切;

△<0,直线与圆锥曲线相离.

若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.

注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。


2、圆锥曲线与向量结合问题


这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。




3、圆锥曲线弦长问题


弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:




4、定点、定值问题


(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;


(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.




5、最值、参数范围问题

这类常见的解法有两种:几何法和代数法.

(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;

(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.

在利用代数法解决最值与范围问题时常从以下五个方面考虑:

(1)利用判别式来构造不等关系,从而确定参数的取值范围;

(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;

(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;

(4)利用基本不等式求出参数的取值范围;

(5)利用函数的值域的求法,确定参数的取值范围.




6、轨迹问题


轨迹问题一般方法有三种:定义法,相关点法和参数法。


定义法:

(1)判断动点的运动轨迹是否满足某种曲线的定义;

(2)设标准方程,求方程中的基本量

(3)求轨迹方程


相关点法:

(1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上;

(2)寻求关系式,x0=f(x,y),y0=g(x,y);

(3)将x0,y0代入已知曲线方程;

(4)整理关于x,y的关系式得到M的轨迹方程。


参数法求轨迹的一般步骤:

(1)选取参数k,用k表示动点M的坐标;


(2)得动点M的轨迹的参数方程 


(3)消去参数k得的M轨迹方程;

(4)由k的范围确定x,y的范围,确保答案的准确性和完备性。




7、探索型,存在性问题

这类问题通常先假设存在,然后进行计算,最后再证明结果满足条件得到结论。对于较难的题目,可从特殊情况入手,找到特殊点进行分析验算,然后再得到一般性结论。




圆锥曲线简化技巧


1、给定一个椭圆和一条直线:

椭圆方程:

直线方程:y=kx+b

一般做法:

上面的运算数不是有点复杂呢,那接着往下看看小数老师提供的计算技巧吧:

巧运算:



2、此外,常用的两个结论还有:


1、直线交椭圆的弦长:


(因为只要联立了方程组,就一定要求判别式,将判别式代入这个式子求弦长会比一般做法简单很多)


2、y1+y2=k(x1+x2)+2m

y1y2=k2x1x2+km(x1+x2)+m2

用此方法可大幅节省运算时间,圆锥曲线是不是简单了不少呢?


例子

这里给出了两道非常简单的例题,快用简洁的方法算一算吧。

1、若椭圆与直线y=2x+5相切,求椭圆方程。

2、若直线y=kx+与椭圆交于不同的两点A、B,O为坐标原点,且>2,求k的取值范围?


答案:1.a=9


2.  1/4<k2<1/3




圆锥曲线公式集锦






相关链接

一道圆锥曲线模拟题的命制与思考

巧选变量,简化计算,一招解决圆锥曲线求范围问题

太经典了!圆锥曲线题型和方法总结

【题型总结】圆锥曲线中的最值问题

圆锥曲线难点突破:定点、定值、探究性问题(典例精讲+变式练习)


戳下面的原文阅读,更有料

点击在看

送你小花花

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存