数学学习的九个境界,你在第几层?
数学精深训练有九个台阶。
第一个台阶是能看懂。
第二个台阶是能记住;
第三个台阶是会解题;
什么是能看懂?能看懂,就是能够懂得数学定义,定理,公式的来龙去脉。一看到这个定理、公式,脑子里面盘旋的一些问题,我们一一找到答案,我们要从内心里面去回答,那么找到的答案越多,做出来的问答越多,我们就懂得的越多,这就是能看懂的含义。
往往是这一步,使得很多人难以入门,一旦我们做到这一点的话,我们马上就迈上了第一个台阶,迈上第一个台阶之后,能记住会解题,只要我们把那些最基本的东西给做出来,做一遍,亲自动手去算一遍,那么我们马上就会跨过第二个、第三个台阶。
这样的话,考一个及格的分数就不成问题了。有不少人把高数的考研目标定为90分,实际上做完刚才所说的这些,每一章,每一节都这么去做的话,考90分根本不成问题。
第四个台阶是熟练解题;
在解题的过程中不断地进行这样的有意识的思维操作的训练,那么熟练解题也为之不远了。
第五个台阶是会梳理;
什么是会梳理?刚才已经给大家分享了数学的基本结构是什么?每一章都在重复同样的基本结构,把那些知识点都给汇总到这个知识结构里面,就是会梳理。包括我们每一章都在用什么样的运算技巧?大家心里面有没有数,这一章我们会用到什么,什么样的运算技巧,能不能1、2、3、4、5、6、7、8,这么列出来,一是一、二是二的列出来,如果这么做了,那肯定是会梳理了。
第六个台阶是融会贯通;
什么是融会贯通?比如导数,是从什么问题引入的?导数的定义,它的严格的定义是什么?它对应的几何直观是什么?导数怎么推出导数的四则运算法则?导数的定义和运算法则又有什么用?能解什么样的题目?如果我们一步步这么做下来的话,那就是融会贯通了,对这一章,这一节融汇贯通了。
第七个台阶是把握数学思维;
什么是把握数学思维?所谓的数学思维就是一个一个的基本的思维操作,像加、减、乘、除法,各种类型的加、减、乘、除法,像加一项、减一项,像它的定义,为什么会有这样的定义?它的问题是什么?这个定义能解决什么问题?当我们提这些问题,去找它的答案的时候,按照这样的思维去训练的时候,我们就把握数学思维了。
第八个台阶是体验学习的乐趣;
一旦我们做到前面这几步的话,那数学的学习自然就有乐趣,设想一下,我们面对一块黑板或者一张白纸,我们从导数的定义开始做起,一下就把这一套全都写下来了,不用看参考书,从导数的定义一直推出这个导数的运算法则,解出一些基本函数的导数,然后解出更复杂函数的导数。这里面能没有乐趣吗?当然有乐趣了。而且我们回答了心中的一个又一个的问题,而这些问题呢,它不但可以提高成绩,还可以跟其他人来交流,给其他人带来启发。
第九个台阶是能够投入,忘我的学习。
达到第八个台阶就很容易到达第九个台阶了,就是乐此不疲,我们称之为心流,flow。我们这样子学习三个小时的数学,感觉时间才过了半个小时一样。
四、五、六、这个台阶迈上去,那么我们数学考个优秀的成绩,考个120分,就不是问题了,如果我们到达了这七、八、九,这三个境界,那么考更高的成绩,像我刚才那个师弟讲的,考130分,140多分,那就是完全有可能的了,因为你都觉得数学学习都不是负担了,不是障碍了,不是痛苦而是享受了,解道难题会带来巨大的乐趣啊。
读不懂数学怎么办?
如果我们到了现在还觉得数学不太容易懂,高数书看起来很头疼,我们往下看看个例子。
我们看一下小平邦彦的故事,小平邦彦是亚洲第一获得菲尔兹奖的数学家,小平邦彦经常说自己天资不好,但是他从中学开始,就是那种做事情一丝不苟,全身心投入的人。他回忆自己第一次学习范德瓦尔登的《代数学》,几乎学不懂;然后就开始抄书,一直到抄懂为止。对于这样的一个大数学家,他在数学学习的初期,也遇到了巨大的困难,看书看不懂。所以我们经常说,看书看得很吃力,很费劲,这实际上本质上根本就不是个问题。那这个故事给你什么启发呢?
有人说“勤能补拙”,没错,我也是这么想的;还有的说“贵在坚持”,也没错,这也是这个故事所传达出的一个重要信息贵在坚持;有的也可能是说“不懂就要抄书”,至少抄书是个方法。还有人说“理解为王”,这也是这个故事讲的一个非常重要的一点,从几乎学不懂,然后最后到懂为止。
就理解很重要,我们对一个我们不理解的东西,怎么能心生乐趣呢?学问的乐趣就在于解惑,不断的解惑,这个解惑过程中产生的乐趣,如果我们一直不懂它,自己都认为不懂,那这个乐趣很难产生啊。
那么往下,跟大家分享一下,我对这个故事的启发
这故事不断在给我新的启发。
首先抄书能抄出数学家吗?如果抄书能抄出数学家的话,那满大街都是数学家了。他肯定是带着问题抄书,边抄边解答,直到懂为止,有了足够多的解答,就自然就懂了。他心里面的困惑都一一找到了答案,有一些是书上提示的答案,有一些是他根据书上的提示自己独立推导出来的答案,想出来的答案,那么就自然懂。
第二是,我们学习数学,必定需要扎实的基本功,这个基本功是什么?就是刚才讲的那个基本的思维技能,但可惜的是许多人不曾掌握这个思维技能,甚至都没有意识到,我们在做数学的过程中,在不断进行同样的思维操作,那个思维操作就是:基本的问答,不断在做问答,不断地在做加、减、乘、除法,不断地在从问题到定义,到定义的性质,到运算法则,到定理,到定理的应用去解题目,不断地在进行这样的或大或小的思维操作,这些思维操作,就是数学思维的基本的技能,也就是我们学数学的基本功。
第三点是,任何技能的学习,任何技能的掌握,必定是先慢后快,我们想这个,小平邦彦去抄书,如果他一本本地去抄,当但数学的文献浩如烟海,经典著作多得不得了,他如果都是这么慢慢的抄的话,那得抄到何年何月?正因为他抄的过程中,他不断地去熟悉和训练自己的思维技能,任何数学分支都有同样的结构,一旦熟悉这个技能,那就熟能生巧了。
反之,一旦我们前面的东西没掌握,认为它很简单,认为它很显然,认为它不值得一做,很可能在遇到那个考研题目的时候,我们都没有解题思路,甚至了解题思路,我们做不对,做不出来,
还有这么几个启发。
第一,不要纠结于有没有天资,除非努力过。即便是小平邦彦,他学数学的初期,仍然遇到很大的困难,我们在学高数的过程中,遇到困难的时候,看不懂的时候,题目做不出来的时候,经常会自我怀疑,是不是我数学真的就不行啊?我没有数学思维啊?
不是,不是那样子的。认知神经科学的研究表明,我们天生下来就有数学思维。严格的论证,之后跟大家来分享一下。不要再纠结这个问题了,除非我们努力过。连这样的数学家都做过这样的努力,那我们,我们问问自己,我们有没有做过这个与之相,相当的这个努力。
第二,“如果世界上有奇迹,那只不过是努力的代名词”,我们能解一道题目,中等难度的题目,只不过是由那些基本的知识点,那些基本的思维操作所导出来的。一道更难的题目也是一样的,我们解了一道很难的题目,会感到骄傲,感到是个奇迹,那只不过是我们以前以往点点滴滴的努力累积出来的,就是像积分一样,一点一点的积累出来的。
第三,没有绝对懂与不懂,关键是我今天有没有懂得更多。我今天懂了多少,我今天究竟懂了什么?我今天找到了哪些问题的答案,这是关键。包括我们在做一道题目的时候,我做错了,做错的话,我有什么收获?我做对了,也要问自己究竟收获了多少?一是一,二是二,三是三,我们有没有这么去做?这样做非常关键。
来源《东师校本课程研发出版中心》