快速掌握XAFS数据分析:归一化、E-k 转换、傅里叶变换和壳层拟合等
审核:小铅笔
EXAFS数据处理
EXAFS振荡是由于光电子在被吸收原子周围的原子散射后的背散射波与出射波相干涉产生的。振荡信号夹杂在整个吸收谱信号中,为了提取出有用的振荡信号,需要对获得的EXAFS谱进行相应的处理。一般来说,一个标准的数据处理过程包括:归一化、E-k 转换、傅里叶变换和壳层拟合等。
(1)归一化:对于同一种样品,在不同的样品浓度、不同的X射线光强、不同的采集模式下得到的跳边高度是不一样的。为了消除这些影响,使测得的数据统一在一个标准下,需要对实验数据进行归一化处理。归一化就是人为的规定XAFS谱的吸收边强度为“1”,其归一化公式为:
其中E0为吸收边, m0 (E )则是原子的X射线吸收,根据边前边后数据进行低次多项式拟合得到,在将两者外推至E0位置,即得到吸收边处的跳高,也就是m0 (E0 ),如图1所示。
图1 归一化提取有效散射信息
(2)E-k 转换:指将能量空间的XAFS数据c(E )转换到波矢空间c(k ),目的是为了变换到等k 间隔,以进行后续的傅里叶变换。其对应关系如下:
其中me为电子质量,ħ 为普朗克常量除以2π。另外,由于XAFS数据采集中,高能部分信号衰减的很厉害,转换到k 空间后高k 部分有衰减,在实际计算中为了恢复这部分的权重,一般会进行n次幂的加权,即使用的数据为knc(k),其中n一般取1、2或3,取值按照数据的衰减情况来取,目的是恢复未衰减前的原貌,如图2(a)所示。
图2 k空间二次加权信号c(k)(a)与R空间信号(b)
(3)傅里叶变换:将加权后的k 空间数据c(k )转换得到径向分布函数,即R 空间曲线,不同的峰代表了不同位置的配位原子。通过R 空间图,我们可以很直观的判断出配位原子信息,比如峰的位置给出配位原子的键长信息,峰的强度则展示的是配位原子的个数以及无序度等。一个典型的R空间信号图如图2(b)所示。值得注意的是,R空间中峰的位置并非真实键长,一般比真实值短0.3~0.4 Å,真实值可以通过下面的壳层拟合获得。
(4)壳层拟合:根据输入初始结构模型计算理论谱,利用“Monte Carlo Method”对模型的结构参数进行校正,以“最小二乘法”作为评判标准,当理论谱与实验谱符合的足够好的时候,就可以认为获得了与真实情况同样的结构。如图3,通过EXAFS拟合可以得到配位元素Shell,对应配位数N,键长R,体系的无序度σ2 (Debye Waller factor),能量校正△E0和用于判定拟合质量的R factor。拟合参数的设置与预期结构和分析目的密切相关,也直接影响拟合质量。一般而言配位数的误差可以有10%甚至20%,这个参数也是EXAFS拟合中最为不准确的一项。键长的误差一般小于0.02 Å。另外,一般来说σ2 < 0.01,|△E0| <10 eV,R factor < 0.02,但对于实际体系特别是某些复杂的重元素体系或者数据质量并不高的体系,略微偏离这些指标在一定程度上也是可以接受的。
图3 壳层拟合结果表格(a)及拟合曲线(b)
壳层拟合中有几点需要特别注意:
1、一个峰可能是多种配位原子叠加而成,把每个峰都对应单一配位是不严谨的;
2、峰的位置不具有特征性,不同样品中同一位置的峰并不一定代表同样的配位;
3、并非所有的峰都有意义,特别是一些弱峰,可能是伴随强峰出现的,甚至可能是由于噪声信号引起的;
4、峰的高度(面积)与配位数正相关,可以用于粗略的比较配位数的变化,但是同时也受无序度等因素的影响;
5、理论上说,一个数据可以有无数种拟合方式,因此需要对样品的结构有大概的了解,这样才能构建出合理的初始模型;
6、EXAFS拟合给出的是整个体系的平均结果,如体系中20%是六配位,80%是四配位,那么理论上给出的结果为(6*20%+4*80%=)4.4配位;
7、EXAFS给出的是二维信息,并不能以此判断立体结构,如配位数是4,并不能确定是平面四边形还是四面体构型。
小波变换Wavelet Transform
小波变换是一种新式的XAFS数据进行处理方法,使用带颜色的平面图来展示三维信息,除了展示峰的位置以外,还使用不同的颜色代表峰的高度。与传统的傅里叶变换处理x射线吸收谱数据相比,其最大的特点是,使用有限长度的Morlet小波作为基波,取代了傅里叶变换中无限长度的正弦波基波。其优势在于展示配位键长的同时,可以直观的展示出配位原子的种类。
小波变换图谱中,纵轴显示的是配位键长R,整个图谱在纵轴上的投影与传统的傅里叶变换曲线相同。横轴显示的是波矢数k,这是区分不同种类的配位原子的关键,原子序数小的原子对光电子的散射能力弱,其最强振荡会出现在低k部分,而原子序数大的原子则恰恰相反,其最强振荡会出现在高k部分,如图4(a)所示,反应到小波变换图上,就是峰出现在不同的横轴位置,如图4(b)所示。
图4 不同配位原子(上:Ni foil,下: Ni2+溶液)的k空间振荡(a)和对应的小波变换图(b)
小波变换可以一目了然的展示配位原子种类、键长等信息,更加直观的同时,也提高数据的美观性。同时还能为EXAFS壳层拟合指示道路。
XANES数据处理
XANES谱图具有“指纹效应”,在拟合之前通过观察边前峰以及白线峰通常能直接得到一些结构特征。通常,通过XANES谱图的观察,可以得到吸收原子的价态以及配位原子的几何结构。
电子跃迁中存在“跃迁定则”,通俗的规则是1s 到nd 轨道跃迁是禁阻的,而到np 的跃迁是允许的。而配位原子的几何结构对称性可以影响到吸收原子分子轨道。以四面体结构为例,形成反键态的三重简并3d 轨道和4p 轨道有相同的对称性,可以发生杂化,从而使得3d 轨道带有4p 轨道的性质,在这种情况下,1s→3d 的跃迁不再是禁阻,于是会出现一个很强的边前峰,如图5红线所示。而在六配位八面体结构中,反键态的二重简并3d 轨道与4p 轨道对称性不同,不会发生杂化,1s→3d 的跃迁依然是禁阻的,所以不会有明显的边前峰出现,如图5蓝线所示。图5就展示了随着配位结构从低对称性的四配位到高对称性的六配位,边前峰逐渐变弱以至几乎消失,而白线峰逐渐升高。
图5 不同配位结构的化合物中Ti K边吸收谱
吸收原子的价态通过XANES谱的比较也能直观的展示出来,高氧化态的金属与配体的成键作用更强,其成键分子轨道越稳定,那么反键分子轨道能级更高,换句话说,电子跃迁到反键分子轨道需要的能量就更大,这样导致白线峰的位置处于更高能区。如图6所示,随着Cu氧化态的增加,吸收峰向高能区域移动,对于离子型化合物,一个经验数据是2~3eV/单位氧化态。
图6 不同价态的Cu K边吸收谱
另外,通过观察白线峰与共振峰位置的能量差,可以近似的判断吸收原子与第一配位层原子的平均距离,也就是通常所说的Natoli规则:
其中ER为共振峰的能量位置,Eb为吸收阈值某一激发态能量位置,R为第一配位层平均键长,C 为常数。可以据此来比较几种化合物第一配位层键长的相对大小,在拟合过程中则可分析拟合的结构第一配位层键长是否正确。
铅笔解析
专门做数据分析的团队
主营业务是
推荐阅读
武大副教授被指骚扰10多位女学生,学校发情况通报!本人也回应了!
铅笔解析 招聘辣!
万水千山总是情,点点在看行不行