NCCN骨肿瘤临床实践指南2017.2版(4)
好消息:
目前《指南解读》已经完成43个癌种NCCN临床实践指南及7个支持治疗指南(合计50个)的编译,后续我们将陆续再编译筛查、预防、降低风险指南以及老年肿瘤、青少年及年轻成人肿瘤指南并更新!有意获取中文指南电子版的同行,可加黄医生个人微信号30842121,我们将以PDF格式通过电子邮箱发送。考虑编译者团队在工作之余付出的大量辛苦工作,我们将向每位订制者收取360元(50个指南),敬请大家理解和支持!
目录
骨肿瘤管理原则(BONE-A)
活检
●在原发部位的任何手术或固定之前应进行活检诊断。
●活检最好在后面行根治性治疗的诊疗中心进行。
●活检位置是极其关键的。
●活检应该是芯针活检或手术活检。
●技术:穿刺活检或开放活检遵循相同原则。针穿刺活检不推荐用于颅底肿瘤。
●外科医生、肌肉骨骼放射科医生和骨科病理医生之间的适当沟通是非常重要的。
●分子检测和组织库可能需要新鲜组织。
●一般来说,没有遵循适当的活检程序可能引致不良的治疗效果。
手术
●广泛切除应实现手术切缘组织病理阴性。
●阴性的手术切缘有利于局部肿瘤的控制。
●局部肿瘤控制可通过保肢切除或截肢实现(根据患者制定个性化方案)。
●当可合理保全患肢功能时,保肢治疗是首选方案。
●最终病理评估应包括评估手术切缘和肿瘤的大小/尺寸。
实验室检查
●实验室检查如CBC、乳酸脱氢酶、碱性磷酸酶可能与骨肉瘤诊断、预后和治疗相关,应在患者做根治性治疗前进行,并在治疗和监测期间定期复查。
治疗
●化疗前应与患者说明对生育影响的问题。
●应由多学科小组的医生直接治疗骨肿瘤患者(1类推荐)。见TEAM-1。
长期随访和监测/监控
●患者应该有生存处方,安排一个多学科小组进行随访。
●对于长期幸存者,推荐进行长期随访以监测和治疗手术、放疗、和化疗的后期影像。
●根据临床需要,参见NCCN青少年和年轻成人(AYA,15-39岁)肿瘤指南。
骨肿瘤全身治疗药物(BONE-B)
软骨肉瘤
●传统型软骨肉瘤(1-3级)没有已知的标准化疗方案
●间叶型软骨肉瘤:遵循尤文肉瘤方案(2B类推荐)
●去分化型软骨肉瘤:遵循骨肉瘤方案(2B类推荐)
脊索瘤
►伊马替尼1,2,3
►伊马替尼联合顺铂4或西罗莫司5
►厄洛替尼6
►舒尼替尼7
►拉帕替尼用于EGFR阳性的脊索瘤8(2B类推荐)
►索拉非尼9,10
尤文肉瘤†
●一线治疗(主要治疗/新辅助治疗/辅助治疗)††
►VAC/IE
(长春新碱、多柔比星和环磷酰胺与异环磷酰胺和依托泊苷交替)11,12,†††
►VAI (长春新碱、多柔比星和异环磷酰胺)13,14
►VIDE (长春新碱、异环磷酰胺、多柔比星和依托泊苷)15
●初诊时为转移性疾病的初始治疗††
►VAdriaC(长春新碱、多柔比星和环磷酰胺)16
►VAC/IE11
►VAI13,14
►VIDE15
●二线治疗(复发/难治或转移性疾病)††††
►环磷酰胺和拓扑替康17-20
►伊立替康±替莫唑胺21-27
►异环磷酰胺(高剂量)±依托泊苷28,29
►异环磷酰胺、卡铂和依托泊苷30
►多西他赛和吉西他滨31
骨巨细胞瘤
►狄迪诺塞麦32-34
►α-干扰素 34-36
骨肉瘤†
●一线治疗 (主要治疗/新辅助治疗/辅助治疗或转移性疾病)
►顺铂和多柔比星37-39
►MAP(高剂量甲氨蝶呤、顺铂和多柔比星)40-41
►多柔比星、顺铂、异环磷酰胺和高剂量甲氨蝶呤42
►异环磷酰胺、顺铂和表柔比星43
●二线治疗(复发/难治或转移性疾病)
►多西他赛和吉西他滨31
►环磷酰胺和依托泊苷44
►磷酰胺和拓扑替康20
►吉西他滨45
►异环磷酰胺(高剂量)±依托泊苷28,46
►异环磷酰胺、卡铂和依托泊苷30
►高剂量甲氨蝶呤,依托泊苷和异环磷酰胺47
►153Sm-EDTMP用于复发或难治性疾病超过二线治疗的患者48
►Ra 22349-51
►索拉菲尼52
►索拉菲尼+依维莫司53
高级别未分化多形性肉瘤
●遵循骨肉瘤方案(2B类推荐)
参考文献:
1.Geoerger B, Morland B, Ndiaye A, et al. Target-driven exploratory study of imatinib mesylate in children with solid malignancies by the Innovative Therapies for Children with Cancer (ITCC) European Consortium. Eur J Cancer 2009; 45:2342-2351.
2.Casali PG, Messina A, Stacchiotti S, et al. Imatinib mesylate in chordoma. Cancer 2004;101:2086-2097.
3.Stacchiotti S, Longhi A, Ferraresi V, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol 2012;30(9):914-920.
4.Casali PG, Stacchiotti S, Grosso F, et al. Adding cisplatin (CDDP) to imatinib (IM) re-establishes tumor response following secondary resistance to IM in advanced chordoma. J Clin Oncol (Meeting Abstracts) 2007;25(18 suppl):10038.
5.Stacchiotti S, Marrari A, Tamborini E, et al. Response to imatinib plus sirolimus in advanced chordoma. Ann Oncol 2009;20:1886-1894.
6.Singhal N, Kotasek D, Parnis FX. Response to erlotinib in a patient with treatment refractory chordoma. Anticancer Drugs 2009;20(10):953-955.
7.George S, Merriam P, Maki RG, et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. J Clin Oncol 2009;27:3154-3160.
8.Stacchiotti S, Tamborini E, LoVullo S, et al. Phase II study on lapatinib in advanced EGFR-positive chordoma. Ann Oncol 2013;24(7):1931-6.
9.Amela E, Bompas E, Le Cesne A, et al. A phase II trial of sorafenib (SO) in advanced chordoma patients (pt). J Clin Oncol 2015; 33(15):Supplement 10520.
10.Bompas E, Le Cesne A, Tresch-Bruneel E, et al. Sorafenib in patients with locally advanced and metastatic chordomas: a phase II trial of the French Sarcoma Group (GSF/GETO). Ann Oncol 2015;10:2168-2173.
11.Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 2003;348:694-701.
12.Womer RB, West DC, Krailo MD, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: A report from the Children’s Oncology Group. J Clin Oncol 2012 Nov 20;30(33):4148-54.
13.Paulussen M, Ahrens S, Dunst J, et al. Localized Ewing tumor of bone: final results of the cooperative Ewing's Sarcoma Study CESS 86. J Clin Oncol 2001;19:1818-1829.
14.Paulussen M, Craft AW, Lewis I, et al. Results of the EICESS-92 Study: two randomized trials of Ewing's sarcoma treatment--cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol 2008;26:4385-4393.
15.Juergens C, Weston C, Lewis I, et al. Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial. Pediatr Blood Cancer 2006;47:22-29.
16.Miser JS, Krailo MD, Tarbell NJ, et al. Treatment of metastatic Ewing's sarcoma or primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and etoposide--a Children's Cancer Group and Pediatric Oncology Group study. J Clin Oncol 2004;22:2873-2876.
17.Bernstein ML, Devidas M, Lafreniere D, et al. Intensive therapy with growth factor support for patients with Ewing tumor metastatic at diagnosis: Pediatric Oncology Group/ Children's Cancer Group Phase II Study 9457--a report from the Children's Oncology Group. J Clin Oncol 2006;24:152-159.
18.Hunold A, Weddeling N, Paulussen M, Ranft A, Liebscher C, Jurgens H. Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer 2006;47:795-800.
19.Kushner BH, Kramer K, Meyers PA, Wollner N, Cheung NK. Pilot study of topotecan and high-dose cyclophosphamide for resistant pediatric solid tumors. Med Pediatr Oncol 2000;35:468-474.
20.Saylors RL, 3rd, Stine KC, Sullivan J, et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol 2001;19:3463-3469.
21.Casey DA, Wexler LH, Merchant MS, et al. Irinotecan and temozolomide for Ewing sarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer 2009;53:1029-1034.
22.Wagner LM, Crews KR, Iacono LC, et al. Phase I trial of temozolomide and protracted irinotecan in pediatric patients with refractory solid tumors. Clin Cancer Res 2004;10:840-848.
23.Wagner LM, McAllister N, Goldsby RE, et al. Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer 2007;48:132-139.
24.McNall-Knapp RY, Williams CN, Reeves EN, Heideman RL, Meyer WH. Extended phase I evaluation of vincristine, irinotecan, temozolomide, and antibiotic in children with refractory solid tumors. Pediatr Blood Cancer 2010;54:909-915.
25.Blaney S, Berg SL, Pratt C, et al. A phase I study of irinotecan in pediatric patients: a pediatric oncology group study. Clin Cancer Res 2001;7:32-37
26.Furman WL, Stewart CF, Poquette CA, et al. Direct translation of protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 1999;17:1815-1824.
27.McGregor LM, Stewart CF, Crews KR, et al. Dose escalation of intravenous irinotecan using oral cefpodoxime: A phase I study in pediatric patients with refractory solid tumors. Pediatr Blood Cancer 2012;58:372-379.
28.Miser JS, Kinsella TJ, Triche TJ, et al. Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J Clin Oncol 1987;5:1191-1198.
29.Magnan H, Goodbody CM, Riedel E, et al. Ifosfamide dose-intensification for patients with metastatic Ewing sarcoma. Pediatr Blood Cancer 2015;62(4):594-7.
30.Van Winkle P, Angiolillo A, Krailo M, et al. Ifosfamide, carboplatin, and etoposide (ICE) reinduction chemotherapy in a large cohort of children and adolescents with recurrent/ refractory sarcoma: the Children's Cancer Group (CCG) experience. Pediatr Blood Cancer 2005;44:338-347.
31.Navid F, Willert JR, McCarville MB, et al. Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer 2008;113:419-425.
32.Branstetter DG, Nelson SD, Manivel JC, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res 2012;18:4415-4424.
33.Thomas D, Henshaw R, Skubitz K, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol 2010;11:275-280.
34.Kaiser U, Neumann K, Havemann K. Generalised giant-cell tumour of bone: successful treatment of pulmonary metastases with interferon alpha, a case report. J Cancer Res Clin Oncol 1993;119:301-303.
35.Kaban LB, Troulis MJ, Ebb D, et al. Antiangiogenic therapy with interferon alpha for giant cell lesions of the jaws. J Oral Maxillofac Surg 2002;60:1103-1111.
36.Yasko AW. Interferon therapy for giant cell tumor of bone. Curr Opin Orthop 2006;17:568-572.
37.Bramwell V, Burgers M, Sneath R, et al. A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J Clin Oncol 1992;10:1579-1591.
38.Lewis IJ, Nooij MA, Whelan J, et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J Natl Cancer Inst 2007;99:112-128.
39.Souhami RL, Craft AW, Van der Eijken JW, et al. Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet 1997;350:911-917.
40.Bacci G, Ferrari S, Bertoni F, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol 2000;18:4016-4027.
41.Winkler K, Beron G, Delling G, et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol 1988;6:329-337.
42.Bacci G, Briccoli A, Rocca M, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol 2003;14:1126-1134.
43.Basaran M, Bavbek ES, Saglam S, et al. A phase II study of cisplatin, ifosfamide and epirubicin combination chemotherapy in adults with nonmetastatic and extremity osteosarcomas. Oncology 2007;72:255-260.
44.Berger M, Grignani G, Ferrari S, et al. Phase 2 trial of two courses of cyclophosphamide and etoposide for relapsed high-risk osteosarcoma patients. Cancer 2009;115: 2980-2987.
45.Maki RG, Wathen JK, Patel SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002. J Clin Oncol 2007;25:2755-2763.
46.Goorin AM, Harris MB, Bernstein M, et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J Clin Oncol 2002;20(2):426-33. http://www.ncbi.nlm.nih.gov/pubmed/11786570.
47.Le Deley MC, Guinebretiere JM, Gentet JC, et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur J Cancer 2007;43:752-761.
48.Anderson PM, Wiseman GA, Dispenzieri A, et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol 2002;20:189-196.
49.Subbiah V; Anderson PM; Rohren E. Alpha Emitter Radium 223 in High-Risk Osteosarcoma: First Clinical Evidence of Response and Blood-Brain Barrier Penetration. JAMA Oncol 2015;1(2):253-255.
50.Anderson PM; Subbiah V; Rohren E. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: Samarium-153-EDTMP and Radium-223. Adv Exp Med Biol 2014;804:291-304.
51.Subbiah V; Rohren E; Huh WW; Kappadath CS; Anderson PM. Phase 1 dose escalation trial of intravenous radium 223 dichloride alpha-particle therapy in osteosarcoma. J Clin Oncol 2014;32(5s): Abstract TPS10600.
52.Grignani G, Palmerini E, Dileo P, et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol 2012; 23:508-516.
53.Grignani G, Palmerini E, Ferraresi V, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol 2015;16(1):90-107.
放射治疗原则(BONE-C)
●强烈鼓励患者在提供手术和全身治疗的同一个诊疗中心进行放疗。
●如有指征,应考虑专业技术,如:调强放疗(IMRT);粒子束放疗(质子、碳离子或其他重离子);立体定向放射外科;或分割的立体定向放疗,可在最大限度保护正常组织的同时给予高剂量治疗。
软骨肉瘤
●颅底肿瘤
►术后放疗或不可切除病变的放疗:>70Gy,使用专业技术
●颅外的部位
►可考虑给予术前放疗(19.8-50.4 Gy)(如果可能存在阳性切缘),然后行最终目标剂量为70 Gy(R1切除)1和72-78 Gy(R2切除)1的个体化术后放疗。
►可考虑行术后放疗 (60–70 Gy),尤其是对于高级别/去分化/间叶型肿瘤距离切缘近或切缘阳性的患者。
►对于不可切除病灶考虑用专业技术行高剂量放疗。
脊索瘤
●颅底
►术后放疗(R1和R2切除)1或不可切除病变的放疗,70Gy或70Gy以上(总剂量将取决于正常组织的耐受剂量)。
►对于R0切除的患者考虑术后放疗。
●移动脊柱
►考虑术前放疗(19.8–50.4 Gy) 和术后放疗,总剂量70Gy(取决于正常组织的耐受剂量)。
尤文肉瘤
原发肿瘤的治疗
●根治性放疗
►应从12周的VAC/IE方案化疗或18周的VIDE化疗方案后开始
►放射野和剂量:
◊45Gy,初始肿瘤靶区(GTV1)+1-1.5cm(临床靶区,CTV1)+0.5-1cm(计划靶区,PTV1)
–肿瘤靶区(GTV1)定义为:治疗前骨和软组织病变的范围。如果肿瘤对化疗起效,正常组织恢复到自然位置,GTV1应除外化疗前延伸到腔隙的软组织的体积(如:化疗后肿瘤退缩,肺、肠或膀胱恢复到正常位置)
◊锥下野:覆盖原发骨肿瘤的范围+化疗后软组织(GTV2),总剂量55.8Gy+1-1.5cm(CTV2)+0.5-1cm(PTV2)
◊对于化疗后缩小<50%的患者,考虑增加调强剂量,总剂量为59.4Gy。
●术前放疗
►考虑用于临界切除的肿瘤,和巩固化疗同步进行。
►放射野和剂量:
◊ 初始GTV + 2 cm,36–45 Gy
●术后放疗
►应在术后60天开始放疗,与巩固化疗同步进行
►放射野和剂量:
◊R0切除:考虑用于组织学反应差的患者(即使切缘足够),45Gy,GTV2+1-1.5cm(CTV1)+0.5-1cm(PTV1)
◊R1切除:1 45 Gy ,GTV2 + 1–1.5 cm(CTV1) + 0.5–1 cm (PTV1)
◊R2 切除:1 45 Gy,GTV2+ 1–1.5 cm(CTV1 )+ 0.5–1 cm(PTV1 ),随后对残留病灶进行锥下野放疗,合计总剂量55.8 Gy,GTV2 + 1–1.5 cm( CTV2) + 0.5–1 cm(PTV2)
半胸照射
►应考虑用于胸壁原发合并大面积同侧胸膜受累的患者
►15–20 Gy (1.5 Gy/fx),随后对原发部位进行锥下野放疗 (最终剂量取决于切缘)
转移性疾病的放疗
●在完成化疗/转移瘤切除术后进行全肺照射(3类推荐)
►15 Gy (1.5 Gy/fx) ,用于 <14岁的患者
►18 Gy ,用于>14岁的患者
●儿童肿瘤学组(COG)正在研究6岁前(12Gy)或6岁后(15Gy)的分组。
骨巨细胞瘤
转移性疾病的治疗
●考虑对序贯栓塞、狄迪诺塞麦、干扰素或长效干扰素(PEG IFN)治疗无反应的不可切除/进展/复发的肿瘤进行放疗 (50–60 Gy) 。
●在一些研究中已经注意到放疗后恶性转化的风险增加。
骨肉瘤
原发肿瘤的治疗
●对于切除后切缘阳性、次全切除或不可切除的患者应考虑进行放疗。
►术后放疗(R1或R2切除):1 55Gy+对微观或肉眼病变进行9-13Gy调强放疗(对高危部位总剂量64-68Gy)。
►不切除病变: 60–70 Gy (总剂量取决于正常组织的耐受剂量)
转移性疾病的治疗
●考虑用153Sm-EDTMP和Radium 223
●考虑使用立体定向放射外科,尤其对于寡转移者。
注:
1.R0=无镜下病灶残留;R1=镜下肿瘤病灶残留;R2=肉眼肿瘤残留。
参考文献
软骨肉瘤
Amichetti M, Amelio D, Cianchetti M, et al. A systematic review of proton therapy in the treatment of chondrosarcoma of the skull base. Neurosurg Rev 2010;33(2):155. Goda J, Ferguson P, O'Sullivan B, et al. High-risk extracranial chondrosarcoma – Long-term results of surgery and radiation therapy. Cancer 2011;117:2513-9.
Kawaguchi S, Weiss I, Lin PP, Huh WW, Lewis VO. Radiation therapy is associated with fewer recurrences in mesenchymal chondrosarcoma. Clin Orthop Relat Res 2014; 472(3): 856-864.
Rosenberg AE, Nielsen GP, Keel SB, et al. Chondrosarcoma of the base of the skull: a clinicopathologic study of 200 cases with emphasis on its distinction from chordoma. Am J Surg Pathol 1999;23(11):1370.
Uhl M, Mattke M, Welzel T, Oelmann J, Habl G, Jensen AD, Ellerbrock M, Haberer T, Herfarth KK, Debus J. High control rate in patients with chondrosarcoma of the skull base after carbon ion therapy: First report of long-term results. Cancer 2014 (on-line only).
脊索瘤
Amichetti M, Cianchetti M, Amelio D, et al. Proton therapy in chordoma of the base of the skull: a systematic review. Neurosurg Rev 2009;32(4):403.
Boriani S, Bandiera S, Biagini R, Bacchini P, Boriani L, Cappuccio M, Chevalley F, Gasbarrini A, Picci P, Weinstein JN. Chordoma of the mobile spine: fifty years of experience. Spine (Phila Pa 1976) 2006; 31(4): 493-503.
Park L, Delaney TF, Liebsch NJ, et al. Sacral chordomas: Impact of high-dose proton/photon-beam radiation therapy combined with or without surgery for primary versus recurrent tumor. Int J Radiat Oncol Biol Phys 2006;65(5):1514-21.
Rutz HP, Weber DC, Sugahara S, Timmermann B, Lomax AJ, Bolsi A, Pedroni E, Coray A, Jermann M, Goitein G. Extracranial chordoma: Outcome in patients treated with function-preserving surgery followed by spot-scanning proton beam irradiation. Int J Radiat Oncol Biol Phys 2007; 67(2):512-520.
Yasuda M, Bresson D, Chibbaro S, Cornelius JF, Polivka M, Feuvret L, Takayasu M, George B. Chordomas of the skull base and cervical spine: clinical outcomes associated with a multimodal surgical resection combined with proton-beam radiation in 40 patients. Neurosurg Rev 2012; 35(2):171-182; discussion 182-173.
尤文肉瘤
Denbo JW, Shannon Orr W, Wu Y, et al. Timing of surgery and the role of adjuvant radiotherapy in Ewing sarcoma of the chest wall: A single-institution experience. Ann Surg Oncol 2012;19(12):3809-15.
Donaldson SS. Ewing sarcoma: radiation dose and target volume. Pediatr Blood Cancer 2004;42(5):471-6. Dunst J, Schuck A. Role of radiotherapy in Ewing tumors. Pediatr Blood Cancer 2004;42(5):465-70.
Indelicato DJ, Keole SR, Lagmay JP, et al. Chest wall Ewing sarcoma family of tumors: long-term outcomes. Int J Radiat Oncol Biol Phys 2011;81(1):158-66. Paulino AC, Mai WY, Teh BS. Radiotherapy in metastatic Ewing sarcoma. Am J Clin Oncol 2012 Apr 27. [Epub ahead of print]
Paulino AC, Nguyen TX, Mai WY, et al. Dose response and local control using radiotherapy in non-metastatic Ewing sarcoma. Pediatr Blood Cancer 2007;49(2):145-8. Rombi B, DeLaney TF, MacDonald SM, et al. Proton radiotherapy for pediatric Ewing's sarcoma: initial clinical outcomes. Int J Radiat Oncol Biol Phys 2012;82(3):1142-8.
Schuck A, Ahrens S, von Schorlemer I, et al. Radiotherapy in Ewing tumors of the vertebrae: treatment results and local relapse analysis of the CESS 81/86 and EICESS 92 trials. Int J Radiat Oncol Biol Phys 2005;63(5):1562-7.
Tanguturi SK, George S, Marcus KJ, et al. Whole lung irradiation in adults with metastatic Ewing Sarcoma: Practice patterns and implications for treatment. Sarcoma 2015, Article ID 591698 5 pages.
Yock TI, Krailo M, Fryer CJ, et al. Local control in pelvic Ewing sarcoma: analysis from INT-0091--a report from the Children's Oncology Group. J Clin Oncol 2006 Aug 20;24(24):3838-43. Erratum in: J Clin Oncol 2006;24(30):4947.
骨巨细胞瘤
Caudell JJ, Ballo MT, Zagars GK, et al. Radiotherapy in the management of giant cell tumor of bone. Int J Radiat Oncol Biol Phys 2003;57(1):158.
Hug EB, Muenter MW, Adams JA, et al. 3-D-conformal radiation therapy for pediatric giant cell tumors of the skull base. Strahlenther Onkol 2002;178(5):239.
Malone S, O'Sullivan B, Catton C, et al. Long-term follow-up of efficacy and safety of megavoltage radiotherapy in high-risk giant cell tumors of bone. Int J Radiat Oncol Biol Phys 1995;33(3):689.
Ruka W, Rutkowski P, Morysinski T, et al. The megavoltage radiation therapy in treatment of patients with advanced or difficult giant cell tumors of bone. Int J Radiat Oncol Biol Phys 2010;78(2):494.
组织学报告为混合型
DeLaney TF, Liebsch NJ, Pedlow FX, et al. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys 2009;74(3):732-9. Jingu K, Tsujii H, Mizoe JE, Hasegawa A, Bessho H, Takagi R, Morikawa T, Tonogi M, Tsuji H, Kamada T, Yamada S. Organizing Committee for the Working Group for Head-and-Neck Cancer. Carbon ion radiation therapy improves the prognosis of unresectable adult bone and soft-tissue sarcoma of the head and neck. Int J Radiat Oncol Biol Phys 2012; 82(5): 2125-2131.
Kamada T, Tsujii H, Yanagi T, et al. Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. Working Group for the Bone and Soft Tissue Sarcomas. J Clin Oncol 2002;20(22):4466.
Wagner TD, Kobayashi W, Dean S, et al. Combination short-course preoperative irradiation, surgical resection, and reduced-field high-dose postoperative irradiation in the treatment of tumors involving the bone. Int J Radiat Oncol Biol Phys 2009;73(1):259-66.
骨肉瘤
Anderson PM; Subbiah V; Rohren E. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: Samarium-153-EDTMP and Radium-223. Adv Exp Med Biol 2014;804:291-304.
Ciernik IF, Niemierko A, Harmon DC, Kobayashi W, Chen YL, Yock TI, Ebb DH, Choy E, Raskin KA, Liebsch N, Hornicek FJ, Delaney TF. Proton-based radiotherapy for unresectable or incompletely resected osteosarcoma. Cancer 2011;117(19): 4522-4530.
DeLaney, TF, Park L, Goldberg SI, Hug EB, Liebsch NJ, Munzenrider JE, Suit HD. Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys 2005;61(2): 492-498.
Guadagnolo BA, Zagars GK, Raymond AK, Benjamin RS, Sturgis EM. Osteosarcoma of the jaw/craniofacial region: outcomes after multimodality treatment. Cancer 2009;115(14): 3262-3270.
Mahajan A, Woo SY, Kornguth DG, Hughes D, Huh E, Chang EL, Herzog CE, Pelloski CE, Anderson P. Multimodality treatment of osteosarcoma: radiation in a high-risk cohort. Pediatr Blood Cancer 2008;50(5): 976-982.
Subbiah V; Anderson PM; Rohren E. Alpha Emitter Radium 223 in High-Risk Osteosarcoma: First Clinical Evidence of Response and Blood-Brain Barrier Penetration. JAMA Oncol 2015;1(2):253-255.
Subbiah V; Rohren E; Huh WW; Kappadath CS; Anderson PM. Phase 1 dose escalation trial of intravenous radium 223 dichloride alpha-particle therapy in osteosarcoma. J Clin Oncol 2014;32(5s): Abstract TPS10600. Presented at the 2014 ASCO Annual Meeting, Chicago, IL, United States.
分期(ST-1)
(转载请联系公众号"指南解读"黄医生个人微信号:30842121)
更多精彩内容,请点击:
长按二维码,关注我们