1. E. Garfield, Citation indexes for science; a new dimension
in documentation through association of ideas. Science 122,
108–111 (1955). doi: 10.1126/science.122.3159.108;
pmid: 14385826
2. D. J. S. Price, Little Science, Big Science (Columbia Univ.
Press, 1963).
3. J. G. Foster, A. Rzhetsky, J. A. Evans, Tradition and
innovation in scientists’ research strategies.
Am. Sociol. Rev. 80, –908 (2015). 875doi: 10.1177/
0003122415601618
4. S. Milojević, Quantifying the cognitive extent of science.
J. Informetr. 9, 962–973 (2015). doi: 10.1016/
j.joi.2015.10.005
5. T. Kuhn, M. Perc, D. Helbing, Inheritance patterns in citation
networks reveal scientific memes. Phys. Rev. X 4, 041036
(2014). doi: 10.1103/PhysRevX.4.041036
6. R. Klavans, K. W. Boyack, Which type of citation analysis
generates the most accurate taxonomy of scientific and
technical knowledge? J. Assoc. Inf. Sci. Technol. 68, 984–998
(2016). doi: 10.1002/asi.23734
7. U. Shwed, P. S. Bearman, The temporal structure of scientific
consensus formation. Am. Sociol. Rev. 75, 817–840 (2010).
doi: 10.1177/0003122410388488; pmid: 21886269
8. J. Bruggeman, V. A. Traag, J. Uitermark, Detecting
communities through network data. Am. Sociol. Rev. 77,
1050–1063 (2012). doi: 10.1177/0003122412463574
9. F. Shi, J. G. Foster, J. A. Evans, Weaving the fabric of science:
Dynamic network models of science’s unfolding structure.
Soc. Networks 43, 73–85 (2015). doi: 10.1016/
j.socnet.2015.02.006
10. L. M. A. Bettencourt, D. I. Kaiser, J. Kaur, Scientific discovery
and topological transitions in collaboration networks.
J. Informetr. 3, 210–221 (2009). doi: 10.1016/
j.joi.2009.03.001
11. X. Sun, J. Kaur, S. Milojević, A. Flammini, F. Menczer,
Social dynamics of science. Sci. Rep. 3, 1069 (2013).
doi: 10.1038/srep01069; pmid: 23323212
12. T. S. Kuhn, The Essential Tension: Selected Studies in
Scientific Tradition and Change (Univ. of Chicago Press, 1977).
13. P. Bourdieu, The specificity of the scientific field and
the social conditions of the progress of reasons.
Soc. Sci. Inf. (Paris) 14, 19–47 (1975). doi: 10.1177/
053901847501400602
14. T. Jia, D. Wang, B. K. Szymanski, Quantifying patterns of
research-interest evolution. Nat. Hum. Behav. 1, 0078 (2017).
doi: 10.1038/s41562-017-0078
15. A. Rzhetsky, J. G. Foster, I. T. Foster, J. A. Evans, Choosing
experiments to accelerate collective discovery. Proc. Natl.
Acad. Sci. U.S.A. 112, 14569–14574 (2015).
doi: 10.1073/pnas.1509757112; pmid: 26554009
16. R. Rosenthal, The file drawer problem and tolerance for null
results. Psychol. Bull. 86, 638–641 (1979). doi: 10.1037/
0033-2909.86.3.638
17. S. B. Nissen, T. Magidson, K. Gross, C. T. Bergstrom,
Publication bias and the canonization of false facts. eLife 5,
e21451 (2016). doi: 10.7554/eLife.21451; pmid: 27995896
18. L. Yao, Y. Li, S. Ghosh, J. A. Evans, A. Rzhetsky, Health ROI as
a measure of misalignment of biomedical needs and
resources. Nat. Biotechnol. 33, 807–811 (2015). doi: 10.1038/
nbt.3276; pmid: 26252133
19. C. S. Wagner et al., Approaches to understanding and
measuring interdisciplinary scientific research (IDR): A review
of the literature. J. Informetr. 5, 14–26 (2011). doi: 10.1016/
j.joi.2010.06.004
20. V. Larivière, S. Haustein, K. Börner, Long-distance
interdisciplinarity leads to higher scientific impact. PLOS ONE
10, e0122565 (2015). doi: 10.1371/journal.pone.0122565;
pmid: 25822658
21. K. J. Boudreau, E. C. Guinan, K. R. Lakhani, C. Riedl, Looking
across and looking beyond the knowledge frontier:
Intellectual distance, novelty, and resource allocation in
science. Manage. Sci. 62, 2765–2783 (2016). doi: 10.1287/
mnsc.2015.2285; pmid: 27746512
22. E. Leahey, J. Moody, Sociological innovation through subfield
integration. Soc. Currents 1, 228–256 (2014). doi: 10.1177/
2329496514540131
23. A. Yegros-Yegros, I. Rafols, P. D’Este, Does interdisciplinary
research lead to higher citation impact? The different
effect of proximal and distal interdisciplinarity. PLOS ONE
10, e0135095 (2015). doi: 10.1371/journal.pone.0135095;
pmid: 26266805
24. L. Bromham, R. Dinnage, X. Hua, Interdisciplinary research
has consistently lower funding success. Nature 534,
684–687 (2016). doi: 10.1038/nature18315; pmid: 27357795
25. D. Kim, D. B. Cerigo, H. Jeong, H. Youn, Technological novelty
profile and inventions future impact. EPJ Data Sci. 5, 8
(2016). doi: 10.1140/epjds/s13688-016-0069-1
26. B. Uzzi, S. Mukherjee, M. Stringer, B. Jones, Atypical
combinations and scientific impact. Science 342, 468–472
(2013). doi: 10.1126/science.1240474; pmid: 24159044
27. J. Wang, R. Veugelers, P. Stephan, “Bias against novelty in
science: A cautionary tale for users of bibliometric
indicators” (NBER Working Paper No. 22180, National Bureau
of Economic Research, 2016).
28. J. P. Walsh, Y.-N. Lee, The bureaucratization of science. Res.
Policy 44, 1584–1600 (2015). doi: 10.1016/
j.respol.2015.04.010
29. A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli,
Persistence and uncertainty in the academic career.
Proc. Natl. Acad. Sci. U.S.A. 109, 5213–5218 (2012).
doi: 10.1073/pnas.1121429109; pmid: 22431620
30. P. E. Stephan, How Economics Shapes Science (Harvard Univ.
Press, 2012).
31. P. Azoulay, J. S. Graff Zivin, G. Manso, Incentives and
creativity: Evidence from the academic life sciences.
Rand J. Econ. 42, 527–554 (2011). doi: 10.1111/
j.1756-2171.2011.00140.x
32. R. Freeman, E. Weinstein, E. Marincola, J. Rosenbaum,
F. Solomon, Competition and careers in biosciences. Science
294, 2293–2294 (2001). doi: 10.1126/science.1067477;
pmid: 11743184
33. J. A. Evans, J. G. Foster, Metaknowledge. Science
331, 721–725 (2011). doi: 10.1126/science.1201765;
pmid: 21311014
34. V. Larivière, C. Ni, Y. Gingras, B. Cronin, C. R. Sugimoto,
Bibliometrics: Global gender disparities in science.
Nature 504, 211–213 (2013). doi: 10.1038/504211a;
pmid: 24350369
35. S. F. Way, D. B. Larremore, A. Clauset, in Proceedings of
the 25th International Conference on World Wide Web
(WWW ‘16) (ACM, 2016), pp. 1169–1179.
36. J. Duch et al., The possible role of resource requirements and
academic career-choice risk on gender differences in
publication rate and impact. PLOS ONE 7, e51332 (2012).
doi: 10.1371/journal.pone.0051332; pmid: 23251502
37. J. D. West, J. Jacquet, M. M. King, S. J. Correll, C. T. Bergstrom,
The role of gender in scholarly authorship. PLOS ONE 8,
e66212 (2013). doi: 10.1371/journal.pone.0066212;
pmid: 23894278
38. X. H. T. Zeng et al., Differences in collaboration patterns
across discipline, career stage, and gender. PLOS Biol.
14, e1002573 (2016). doi: 10.1371/journal.pbio.1002573;
pmid: 27814355
39. T. J. Ley, B. H. Hamilton, The gender gap in NIH grant
applications. Science 322, 1472–1474 (2008). doi: 10.1126/
science.1165878; pmid: 19056961
40. C. A. Moss-Racusin, J. F. Dovidio, V. L. Brescoll, M. J. Graham,
J. Handelsman, Science faculty’s subtle gender biases favor
male students. Proc. Natl. Acad. Sci. U.S.A. 109, 16474–16479
(2012). doi: 10.1073/pnas.1211286109; pmid: 22988126
41. R. Van Noorden, Global mobility: Science on the move.
Nature 490, 326–329 (2012). doi: 10.1038/490326a;
pmid: 23075963
42. O. A. Doria Arrieta, F. Pammolli, A. M. Petersen, Quantifying
the negative impact of brain drain on the integration of
European science. Sci. Adv. 3, e1602232 (2017). doi: 10.1126/
sciadv.1602232; pmid: 28439544
43. C. Franzoni, G. Scellato, P. Stephan, The mover’s advantage:
The superior performance of migrant scientists. Econ. Lett.
122, 89–93 (2014). doi: 10.1016/j.econlet.2013.10.040
44. C. R. Sugimoto et al., Scientists have most impact when
they’re free to move. Nature 550, 29–31 (2017).
doi: 10.1038/550029a; pmid: 28980663
45. A. Clauset, S. Arbesman, D. B. Larremore, Systematic
inequality and hierarchy in faculty hiring networks. Sci. Adv.
1, e1400005 (2015). doi: 10.1126/sciadv.1400005;
pmid: 26601125
46. P. Deville et al., Career on the move: Geography,
stratification, and scientific impact. Sci. Rep. 4, 4770
(2014). pmid: 24759743
47. A. M. Petersen et al., Reputation and impact in academic
careers. Proc. Natl. Acad. Sci. U.S.A. 111, 15316–15321
(2014). doi: 10.1073/pnas.1323111111; pmid: 25288774
48. D. K. Simonton, Creative productivity: A predictive and
explanatory model of career trajectories and landmarks.
Psychol. Rev. 104, 66–89 (1997). doi: 10.1037/
0033-295X.104.1.66
49. R. Sinatra, D. Wang, P. Deville, C. Song, A.-L. Barabási,
Quantifying the evolution of individual scientific impact.
Science 354, aaf5239 (2016). doi: 10.1126/science.aaf5239;
pmid: 27811240
50. S. Wuchty, B. F. Jones, B. Uzzi, The increasing dominance
of teams in production of knowledge. Science 316,
1036–1039 (2007). doi: 10.1126/science.1136099;
pmid: 17431139
51. N. J. Cooke, M. L. Hilton, Eds., Enhancing the Effectiveness of
Team Science (National Academies Press, 2015).
52. V. Larivière, Y. Gingras, C. R. Sugimoto, A. Tsou, Team size
matters: Collaboration and scientific impact since 1900.
J. Assoc. Inf. Sci. Technol. 66, 1323–1332 (2015).
doi: 10.1002/asi.23266
53. L. Wu, D. Wang, J. A. Evans, Large teams have developed
science and technology; small teams have disrupted it.
arXiv:1709.02445 [physics.soc-ph] (7 September 2017).
54. B. F. Jones, The burden of knowledge and the “death
of the renaissance man”: Is innovation getting harder?
Rev. Econ. Stud. 76, 283–317 (2009). doi: 10.1111/
j.1467-937X.2008.00531.x
55. S. Milojević, Principles of scientific research team formation
and evolution. Proc. Natl. Acad. Sci. U.S.A. 111, 3984–3989
(2014). doi: 10.1073/pnas.1309723111; pmid: 24591626
56. G. Palla, A.-L. Barabási, T. Vicsek, Quantifying social group
evolution. Nature 446, 664–667 (2007). doi: 10.1038/
nature05670; pmid: 17410175
57. G. J. Borjas, K. B. Doran, Which peers matter? The relative
impacts of collaborators, colleagues, and competitors.
Rev. Econ. Stat. 97, 1104–1117 (2015). doi: 10.1162/
REST_a_00472
58. P. Azoulay, J. G. Zivin, J. Wang, Superstar extinction. Q. J. Econ.
125, 549–589 (2010). doi: 10.1162/qjec.2010.125.2.549
59. A. M. Petersen, Quantifying the impact of weak, strong, and
super ties in scientific careers. Proc. Natl. Acad. Sci. U.S.A.
112, E4671–E4680 (2015). doi: 10.1073/pnas.1501444112;
pmid: 26261301
60. R. K. Merton, The Matthew effect in science. Science 159,
56–63 (1968). doi: 10.1126/science.159.3810.56
61. L. Allen, J. Scott, A. Brand, M. Hlava, M. Altman, Publishing:
Credit where credit is due. Nature 508, 312–313 (2014).
doi: 10.1038/508312a; pmid: 24745070
62. H.-W. Shen, A.-L. Barabási, Collective credit allocation in
science. Proc. Natl. Acad. Sci. U.S.A. 111, 12325–12330
(2014). doi: 10.1073/pnas.1401992111; pmid: 25114238
63. L. Waltman, A review of the literature on citation impact
indicators. J. Informetr. 10, 365–391 (2016). doi: 10.1016/
j.joi.2016.02.007
64. J. E. Hirsch, An index to quantify an individual’s scientific
research output. Proc. Natl. Acad. Sci. U.S.A. 102,
16569–16572 (2005). doi: 10.1073/pnas.0507655102;
pmid: 16275915
65. H. F. Moed, Citation Analysis in Research Evaluation (Springer, 2010).
66. E. Garfield, Citation analysis as a tool in journal evaluation.
Science 178, 471–479 (1972). doi: 10.1126/
science.178.4060.471; pmid: 5079701
67. D. J. de Solla Price, Networks of scientific papers. Science
149, 510–515 (1965). doi: 10.1126/science.149.3683.510;
pmid: 14325149
68. Q. Zhang, N. Perra, B. Gonçalves, F. Ciulla, A. Vespignani,
Characterizing scientific production and consumption in
physics. Sci. Rep. 3, 1640 (2013). doi: 10.1038/srep01640;
pmid: 23571320
69. F. Radicchi, S. Fortunato, C. Castellano, Universality of
citation distributions: Toward an objective measure of
scientific impact. Proc. Natl. Acad. Sci. U.S.A. 105,
17268–17272 (2008). doi: 10.1073/pnas.0806977105;
pmid: 18978030
70. L. Waltman, N. J. van Eck, A. F. J. van Raan, Universality
of citation distributions revisited. J. Assoc. Inf. Sci. Technol.
63, 72–77 (2012). doi: 10.1002/asi.21671
71. M. Golosovsky, S. Solomon, Runaway events dominate the
heavy tail of citation distributions. Eur. Phys. J. Spec. Top.
205, 303–311 (2012). doi: 10.1140/epjst/e2012-01576-4
72. C. Stegehuis, N. Litvak, L. Waltman, Predicting the long-term
citation impact of recent publications. J. Informetr. 9,
642–657 (2015). doi: 10.1016/j.joi.2015.06.005
73. M. Thelwall, The discretised lognormal and hooked power law
distributions for complete citation data: Best options for
modelling and regression. J. Informetr. 10, 336–346 (2016).
doi: 10.1016/j.joi.2015.12.007
74. D. de Solla Price, A general theory of bibliometric and other
cumulative advantage processes. J. Am. Soc. Inf. Sci. 27,
292–306 (1976). doi: 10.1002/asi.4630270505
75. A.-L. Barabási, R. Albert, Emergence of scaling in random
networks. Science 286, 509–512 (1999). doi: 10.1126/
science.286.5439.509; pmid: 10521342
76. P. D. B. Parolo et al., Attention decay in science. J. Informetr.
9, 734–745 (2015). doi: 10.1016/j.joi.2015.07.006
77. D. Wang, C. Song, A.-L. Barabási, Quantifying long-term
scientific impact. Science 342, 127–132 (2013). doi: 10.1126/
science.1237825; pmid: 24092745
78. Y.-H. Eom, S. Fortunato, Characterizing and modeling
citation dynamics. PLOS ONE 6, e24926 (2011). doi: 10.1371/
journal.pone.0024926; pmid: 21966387
79. M. Golosovsky, S. Solomon, Stochastic dynamical model of a
growing citation network based on a self-exciting point
process. Phys. Rev. Lett. 109, 098701 (2012). doi: 10.1103/
PhysRevLett.109.098701; pmid: 23002894
80. A. F. J. van Raan, Sleeping Beauties in science. Scientometrics
59, 467–472 (2004). doi: 10.1023/B:SCIE.0000018543.82441.f1
81. Q. Ke, E. Ferrara, F. Radicchi, A. Flammini, Defining and
identifying Sleeping Beauties in science. Proc. Natl. Acad.
Sci. U.S.A. 112, 7426–7431 (2015). doi: 10.1073/
pnas.1424329112; pmid: 26015563
82. I. Tahamtan, A. Safipour Afshar, K. Ahamdzadeh, Factors
affecting number of citations: A comprehensive review of the
literature. Scientometrics 107, 1195–1225 (2016).
doi: 10.1007/s11192-016-1889-2
83. J. E. Hirsch, Does the h index have predictive power?
Proc. Natl. Acad. Sci. U.S.A. 104, 19193–19198 (2007).
doi: 10.1073/pnas.0707962104; pmid: 18040045
84. D. E. Acuna, S. Allesina, K. P. Kording, Future impact:
Predicting scientific success. Nature 489, 201–202 (2012).
doi: 10.1038/489201a; pmid: 22972278
85. O. Penner, R. K. Pan, A. M. Petersen, K. Kaski, S. Fortunato,
On the predictability of future impact in science.
Sci. Rep. 3, 3052 (2013). doi: 10.1038/srep03052;
pmid: 24165898
86. J. R. Cole, H. Zuckerman, in The Idea of Social Structure:
Papers in Honor of Robert K. Merton, L. A. Coser, Ed.
(Harcourt Brace Jovanovich, 1975), pp. 139–174.
87. P. Azoulay, Research efficiency: Turn the scientific method on
ourselves. Nature 484, 31–32 (2012). doi: 10.1038/484031a;
pmid: 22481340
88. M. Thelwall, K. Kousha, Web indicators for research evaluation.
Part 1: Citations and links to academic articles from the Web.
Prof. Inf. 24, 587–606 (2015). doi: 10.3145/epi.2015.sep.08
89. M. Thelwall, K. Kousha, Web indicators for research
evaluation. Part 2: Social media metrics. Prof. Inf. 24,
607–620 (2015). doi: 10.3145/epi.2015.sep.09
90. L. Bornmann, What is societal impact of research and how
can it be assessed? A literature survey. Adv. Inf. Sci. 64,
217–233 (2013).
91. C. Haeussler, L. Jiang, J. Thursby, M. Thursby, Specific and
general information sharing among competing academic
researchers. Res. Policy 43, 465–475 (2014). doi: 10.1016/
j.respol.2013.08.017
92. A. Oettl, Sociology: Honour the helpful. Nature 489, 496–497
(2012). doi: 10.1038/489496a; pmid: 23018949
93. S. Ravindran, “Getting credit for peer review,” Science, 8
February 2016; www.sciencemag.org/careers/2016/02/
getting-credit-peer-review.
94. R. Costas, Z. Zahedi, P. Wouters, Do “altmetrics” correlate
with citations? Extensive comparison of altmetric
indicators with citations from a multidisciplinary perspective.
J. Assoc. Inf. Sci. Technol. 66, 2003–2019 (2015).
doi: 10.1002/asi.23309
75. A.-L. Barabási, R. Albert, Emergence of scaling in random
networks. Science 286, 509–512 (1999). doi: 10.1126/
science.286.5439.509; pmid: 10521342
76. P. D. B. Parolo et al., Attention decay in science. J. Informetr.
9, 734–745 (2015). doi: 10.1016/j.joi.2015.07.006
77. D. Wang, C. Song, A.-L. Barabási, Quantifying long-term
scientific impact. Science 342, 127–132 (2013). doi: 10.1126/
science.1237825; pmid: 24092745
78. Y.-H. Eom, S. Fortunato, Characterizing and modeling
citation dynamics. PLOS ONE 6, e24926 (2011). doi: 10.1371/
journal.pone.0024926; pmid: 21966387
79. M. Golosovsky, S. Solomon, Stochastic dynamical model of a
growing citation network based on a self-exciting point
process. Phys. Rev. Lett. 109, 098701 (2012). doi: 10.1103/
PhysRevLett.109.098701; pmid: 23002894
80. A. F. J. van Raan, Sleeping Beauties in science. Scientometrics
59, 467–472 (2004). doi: 10.1023/B:SCIE.0000018543.82441.f1
81. Q. Ke, E. Ferrara, F. Radicchi, A. Flammini, Defining and
identifying Sleeping Beauties in science. Proc. Natl. Acad.
Sci. U.S.A. 112, 7426–7431 (2015). doi: 10.1073/
pnas.1424329112; pmid: 26015563
82. I. Tahamtan, A. Safipour Afshar, K. Ahamdzadeh, Factors
affecting number of citations: A comprehensive review of the
literature. Scientometrics 107, 1195–1225 (2016).
doi: 10.1007/s11192-016-1889-2
83. J. E. Hirsch, Does the h index have predictive power?
Proc. Natl. Acad. Sci. U.S.A. 104, 19193–19198 (2007).
doi: 10.1073/pnas.0707962104; pmid: 18040045
84. D. E. Acuna, S. Allesina, K. P. Kording, Future impact:
Predicting scientific success. Nature 489, 201–202 (2012).
doi: 10.1038/489201a; pmid: 22972278
85. O. Penner, R. K. Pan, A. M. Petersen, K. Kaski, S. Fortunato,
On the predictability of future impact in science.
Sci. Rep. 3, 3052 (2013). doi: 10.1038/srep03052;
pmid: 24165898
86. J. R. Cole, H. Zuckerman, in The Idea of Social Structure:
Papers in Honor of Robert K. Merton, L. A. Coser, Ed.
(Harcourt Brace Jovanovich, 1975), pp. 139–174.
87. P. Azoulay, Research efficiency: Turn the scientific method on
ourselves. Nature 484, 31–32 (2012). doi: 10.1038/484031a;
pmid: 22481340
88. M. Thelwall, K. Kousha, Web indicators for research evaluation.
Part 1: Citations and links to academic articles from the Web.
Prof. Inf. 24, 587–606 (2015). doi: 10.3145/epi.2015.sep.08
89. M. Thelwall, K. Kousha, Web indicators for research
evaluation. Part 2: Social media metrics. Prof. Inf. 24,
607–620 (2015). doi: 10.3145/epi.2015.sep.09
90. L. Bornmann, What is societal impact of research and how
can it be assessed? A literature survey. Adv. Inf. Sci. 64,
217–233 (2013).
91. C. Haeussler, L. Jiang, J. Thursby, M. Thursby, Specific and
general information sharing among competing academic
researchers. Res. Policy 43, 465–475 (2014). doi: 10.1016/
j.respol.2013.08.017
92. A. Oettl, Sociology: Honour the helpful. Nature 489, 496–497
(2012). doi: 10.1038/489496a; pmid: 23018949
93. S. Ravindran, “Getting credit for peer review,” Science, 8
February 2016; www.sciencemag.org/careers/2016/02/
getting-credit-peer-review.
94. R. Costas, Z. Zahedi, P. Wouters, Do “altmetrics” correlate
with citations? Extensive comparison of altmetric
indicators with citations from a multidisciplinary perspective.
J. Assoc. Inf. Sci. Technol. 66, 2003–2019 (2015).
doi: 10.1002/asi.23309