论文题目:Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig–MacArthur predator–prey model论文地址:https://www.pnas.org/content/118/4/e2017463118
捕食者和猎物数量的波动引发了生态学中应用的数学方法。结论似乎显而易见:猎物越多,掠食者顺利繁衍生息。它们线性相关。然而,猎物很快减少。随着猎物的减少,捕食者数量随之下降。捕食者减少,猎物数量又会增加。因此,捕食者的生命活动质量再次得到提升。依此类推,循环持续进行。仅依靠直觉,人们也可以很清楚,这样的反馈回路具有重要意义。确实,许多关于捕食者与猎物相互作用的记录,其中一些可以追溯到哈德逊湾公司(Hudson's Bay Company,加拿大一家老牌连锁百货公司);而另一些则无可争议地出现在最新科研进展中,显示出与这种直觉一致的稳定且有规律的波动。对于这种波动,尽管从繁育本能到生态潮流都有众多解释,但科研人员首先考虑的是捕食关系。 图1. 捕食者与猎物(图源:pixabay)
2. 模型建立
Lotka和Volterra指出,拟合相互作用的捕食者-被捕食种群的最早的程式化微分方程,已经可以适当地在捕食者和被捕食者的数量上产生周期性的振荡,但是它具有特殊的性质:这些现在经典的方程式从结构上来看并不稳定。这意味着任意微小的变化都可以产生根本不同的结果——例如根本没有周期性的预测曲线。对于任何自反馈模型(self-respecting model),这都是一个缺点。基于现实数据,研究人员克服了这个问题。可以预见,捕食者的摄入量与捕食者的数量不成正比,而是趋于平缓——这是因为每顿进食都需要处理时间;同时,交互作用以外的因素也会影响进化动力(例如空间竞争 competition for space)。特别是参考文献[4]中使用的Rosenzweig–MacArthur模型中显示了稳定的平衡或极限循环:最终,振荡将具有明确指定的频率和幅度,与初始条件无关。图2. 模型方程的相图及其局部,红色曲线是一个(渐进)稳定的极限环 毫无疑问,该模型中缺少了这些物种之间真实互动的许多细节,但是结构稳定——只要模型足够小,它就可以容纳扰动,并且可以捕获许多天敌互动的基本特征 。自调节反馈回路也发生在与自身(以及与其他物种)相互作用的物种的进化过程中。梅纳德·史密斯(Maynard Smith)首先运用博弈论[5]将这种见解应用于依赖于频率的表型特征选择。该模型中,可以将个体视为参与者,将性状视为策略,将由此产生的“适应度(fitness)”(或生殖成功)视为回报。这种适应度取决于环境。如果生物性状是可遗传的,自然选择会增加适应性,从而使性状适应环境。
[1] A. P. Hendry, Eco-Evolutionary Dynamics (Princeton University Press, 2017).[2] J. Roughgarden, Theory of Population Genetics and Evolutionary Ecology (Prentice Hall, ed. 1, 1979).[3] L. Govaert et al., Eco-evolutionary feedbacks: Theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2018).[4] K. Grunert, H. Holden, E. R. Jakobsen, N. C. Stenseth, Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig–MacArthur predator–prey model. Proc. Natl. Acad. Sci. U.S.A. 118, e2017463118 (2021).[5] J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, 1982).[6] J. M. McNamara, O. Leimar, Game Theory in Biology (Oxford University Press, 2020).[7] T. L. Vincent, J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics (Cambridge University Press, 2005).[8] J. S. Brown, Why Darwin would have loved evolutionary game theory. Proc. Biol. Sci. 283, 20160847 (2016).[9] T. W. Schoener, The newest synthesis: Understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).[10] X.-D. Zheng, C. Li, S. Lessard, Y. Tao, Evolutionary stability concepts in a stochastic environment. Phys. Rev. E 96, 032414 (2017).[11] P. A. Abrams, H. Matsuda, Prey adaptation as a cause of predator-prey cycles. Evolution 51, 1742–1750 (1997).[12] M. Cortez, Genetic variation determines which feedbacks drive and alter predator-prey eco-evolutionary cycles. Ecol. Monogr. 88, 353–371 (2018).[13] D. A. Rand, H. B. Wilson, J. M. McGlade, Dynamics and evolution: Evolutionarily stable attractors, invasion exponents and phenotype dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 343, 261–283 (1994).[14] P. J. Kerr et al., Myxoma virus and the Leporipoxviruses: An evolutionary paradigm. Viruses 7, 1020–1061 (2015).[15] E. M. Olsen et al., Assessing changes in age and size at maturation in collapsing populations of Atlantic cod. Can. J. Fish. Aquat. Sci. 62, 811–823 (2005).[16] M. Nowak, K. Sigmund, The evolution of reactive strategies in iterated games. Acta Appl. Math. 20, 247–265 (1990).[17] J. Hofbauer, K. Sigmund, Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3, 75–79 (1990).[18] S. A. H. Geritz, E. Kisdi, G. Meszena, J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998).[19] F. Dercole, S. Rinaldi, Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications (Princeton University Press, 2008).[20] M. Doebeli, Adaptive Diversification (Princeton University Press, 2011).[21] A Meyer. The Extraordinary Evolution of Cichlid Fishes[J]. 2015.[22] J. Apaloo, J. S. Brown, T. L. Vincent, Evolutionary game theory: ESS, convergence stability, and NIS. Evol. Ecol. Res. 11, 489–515 (2009)