1. Ali Rahimi and Benjamin Recht. Random features for largescale kernel machines. In Advances in neural information processing systems, pages 1177–1184, 2008.
2. Eric V Strobl, Kun Zhang, and Shyam Visweswaran. Approximate kernel-based conditional independence tests for fast non-parametric causal discovery. Journal of Causal Inference, 7(1), 2019.
3. Zheyan Shen, Peng Cui, Tong Zhang, and Kun Kuang. Stable learning via sample reweighting. In AAAI, pages 5692–5699, 2020.
4. Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, and Bo Li. Stable prediction with model misspecification and agnostic distribution shift. In AAAI, pages 4485–4492, 2020.
5. Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image classification: A dataset and baselines. Pattern Recognition, page 107383, 2020.
因果科学第二季读书会报名中
因果推断与机器学习领域的结合已经吸引了越来越多来自学界业界的关注,为深入探讨、普及推广因果科学议题,智源社区携手集智俱乐部将举办第二季「因果科学与CausalAI读书会」。本期读书会着力于实操性、基础性,将带领大家精读因果科学方向两本非常受广泛认可的入门教材。 1. Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell. Causal inference in statistics: A primer. John Wiley & Sons, 2016.(本书中译版《统计因果推理入门(翻译版)》已由高等教育出版社出版) 2. Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. The MIT Press, 2017. 读书会每周将进行直播讨论,进行问题交流、重点概念分享、阅读概览和编程实践内容分析。非常适合有机器学习背景,希望深入学习因果科学基础知识和重要模型方法,寻求解决相关研究问题的朋友参加。 目前因果科学读书会系列,已经有接近400多位的海内外高校科研院所的一线科研工作者以及互联网一线从业人员参与,吸引了国内和国际上大部分的因果科学领域的专业科研人员,如果你也对这个主题感兴趣,想要深度地参与,就快加入我们吧! 详情请点击: 连接统计学、机器学习与自动推理的新兴交叉领域——因果科学读书会再起航