1 J. G. Salway, Metabolism at a Glance (John Wiley & Sons, 2017).2 D. White, J. T. Drummond, C. Fuqua, The Physiology and Biochemistry of Prokaryotes (Oxford University Press, New York, 2012).3 B. Alberts et al., Molecular Biology of the Cell (Garland Science, 5th Ed., 2007).4 B. Niebel, S. Leupold, M. Heinemann, An upper limit on Gibbs energy dissipation governs cellular metabolism. Nat. Metab. 1, 125–132 (2019).5 T. Ariga, M. Tomishige, D. Mizuno, Nonequilibrium energetics of molecular motor kinesin. Phys. Rev. Lett. 121, 218101 (2018).6 S. Toyabe et al., Nonequilibrium energetics of a single F1-ATPase molecule. Phys. Rev. Lett. 104, 198103 (2010).7 S. Toyabe, T. Watanabe-Nakayama, T. Okamoto, S. Kudo, E. Muneyuki, Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc. Natl. Acad. Sci. U.S.A. 108, 17951–17956 (2011).8 J. J. Hopfield, Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U.S.A. 71, 4135–4139 (1974).9 P. Sartori, S. Pigolotti, Thermodynamics of error correction. Phys. Rev. X 5, 041039 (2015).10 G. Lan, P. Sartori, S. Neumann, V. Sourjik, Y. Tu, The energy-speed-accuracy tradeoff in sensory adaptation. Nat. Phys. 8, 422–428 (2012).11 D. G. Nicholls, S. J. Ferguson, Bioenergetics (Academic Press, 2013).12 J. Brugu ´es, D. Needleman, Physical basis of spindle self-organization. Proc. Natl. Acad. Sci. U.S.A. 111, 18496–18500 (2014). Yang et al. Physical bioenergetics: Energy fluxes, budgets, and constraints in cells https://doi.org/10.1073/pnas.2026786118 Downloaded at Institute of Automation on July 18, 202113 M. C. Marchetti et al., Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).14 D. Needleman, Z. Dogic, Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).15 J. Prost, F. Jülicher, J. F. Joanny, Active gel physics. Nat. Phys. 11, 111–117 (2015).16 P. Ronceray, C. P. Broedersz, M. Lenz, Fiber networks amplify active stress. Proc. Natl. Acad. Sci. U.S.A. 113, 2827–2832 (2016).17 G. Falasco, M. Esposito, Dissipation-time uncertainty relation. Phys. Rev. Lett. 125, 120604 (2020).18 T. R. Gingrich, G. M. Rotskoff, J. M. Horowitz, Inferring dissipation from current fluctuations. J. Phys. A Math. Theor. 50, 184004–184024 (2017).19 J. M. Horowitz, T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 16, 15–20 (2020).20 R. Rao, M. Esposito, Conservation laws shape dissipation. New J. Phys. 20, 023007–023032 (2018).21 U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001–126059 (2012).22 S. A. Mookerjee, A. A. Gerencser, D. G. Nicholls, M. D. Brand, Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 292, 7189–7207 (2017).23 Y. Nagano, K. L. Ode, Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis. Phys. Biol. 11, 046008–046013 (2014).24 J. Rodenfels, K. M. Neugebauer, J. Howard, Heat oscillations driven by the embryonic cell cycle reveal the energetic costs of signaling. Dev. Cell 48, 646–658.e6 (2019).25 J. M. Tennessen, K. D. Baker, G. Lam, J. Evans, C. S. Thummel, The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 13, 139–148 (2011).26 R. L. Krisher, R. S. Prather, A role for the Warburg effect in preimplantation embryo development: Metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320 (2012).27 Y. Song et al., Energy budget of Drosophila embryogenesis. Curr. Biol. 29, R566–R567 (2019).28 R. J. Chason, J. Csokmay, J. H. Segars, A. H. DeCherney, D. R. Armant, Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol. Metab. 22, 412–420 (2011).29 J. Rodenfels et al., Contribution of increasing plasma membrane to the energetic cost of early zebrafish embryogenesis. Mol. Biol. Cell 31, 520–526 (2020).30 X. Yang, D. J. Needleman, Coarse-grained model of mitochondrial metabolism enables subcellular flux inference from fluorescence lifetime imaging of NADH. bioRxiv [Preprint] (2020). https://doi.org/10.1101/2020.11.20.392225 (Accessed 7 April 2021).31 E. J. Lawrence, E. Boucher, C. A. Mandato, Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div. 11, 3 (2016).32 R. Dumollard et al., Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131, 3057–3067 (2004).33 X.-H. Wang, S. Yin, X.-H. Ou, S.-M. Luo, Increase of mitochondria surrounding spindle causes mouse oocytes arrested at metaphase I stage. Biochem. Biophys. Res. Commun. 527, 1043–1049 (2020).34 X. Duan et al., Dynamic organelle distribution initiates actin-based spindle migration in mouse oocytes. Nat. Commun. 11, 277 (2020).35 L. C. M. Auberson, T. Kanbier, U. von Stockar, Monitoring synchronized oscillating yeast cultures by calorimetry. J. Biotechnol. 29, 205–215 (1993).36 P. J. Foster, M. Razo-Mejia, R. Phillips, Measuring the energetic costs of embryonic development. Dev. Cell 48, 591–592 (2019).37 S. Hur, R. Mittapally, S. Yadlapalli, P. Reddy, E. Meyhofer, Sub-nanowatt resolution direct calorimetry for probing real-time metabolic activity of individual C.elegans worms. Nat. Commun. 11, 2983 (2020).38 R. B. Kemp, Microcalorimetric studies of tissue cells and bacteria. Pestic. Sci. 6, 311–325 (1975).39 T. Maskow, S. Paufler, What does calorimetry and thermodynamics of living cells tell us? Methods 76, 3–10 (2015).40 A. Thommen et al., Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians. eLife 8, e38187 (2019).41 D. A. Ferrick, A. Neilson, C. Beeson, Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov. Today 13, 268–274 (2008).42 E. Gnaiger, G. M ´endez, S. C. Hand, High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc. Natl. Acad. Sci. U.S.A. 97, 11080–11085 (2000).43 F. D. Houghton, J. G. Thompson, C. J. Kennedy, H. J. Leese, Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 44, 476–485 (1996).44 P. M. Herst, M. V. Berridge, Cell surface oxygen consumption: A major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim. Biophys. Acta 1767, 170–177 (2007).45 D. F. Rolfe, G. C. Brown, Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).46 W. M. Thornton, XV. The relation of oxygen to the heat of combustion of organic compounds. Lond. Edinb. Dublin Philos. Mag. J. Sci. 33, 196–203 (1917).47 M. Calvin, The path of carbon in photosynthesis (1961). https://www.nobelprize.org/prizes/chemistry/1961/calvin/lecture/. Accessed 8 March 2021.48 W. Wiechert, 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).49 S. Iyer-Biswas et al., Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl. Acad. Sci. U.S.A. 111, 15912–15917 (2014).50 F. Si et al., Mechanistic origin of cell-size control and homeostasis in bacteria. Curr. Biol. 29, 1760–1770.e7 (2019).51 A. Papagiannakis, B. Niebel, E. C. Wit, M. Heinemann, Autonomous metabolic oscillations robustly gate the early and late cell cycle. Mol. Cell 65, 285–295 (2017).52 V. Bulusu et al., Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40, 331–341.e4 (2017).53 M. Oginuma et al., A gradient of glycolytic activity coordinates FGF and wnt signaling during elongation of the body Axis in amniote embryos. Dev. Cell 40, 342–353.e10 (2017).54 S. T. Smiley et al., Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. U.S.A. 88, 3671–3675 (1991).55 J. Morris et al., Pervasive within-mitochondrion single-nucleotide variant heteroplasmy as revealed by single-mitochondrion sequencing. Cell Rep. 21, 2706–2713 (2017).56 J. S. Park et al., Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 578, 621–626 (2020).57 H. Imamura et al., Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl. Acad. Sci. U.S.A. 106, 15651–15656 (2009).58 M. C. Skala et al., In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J. Biomed. Opt. 12, 024014 (2007).59 C. M. Daz-Garca et al., Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. J. Neurosci. Res. 97, 946–960 (2019).60 J. Berg, Y. P. Hung, G. Yellen, A genetically encoded fluorescent reporter of ATP:ADP ratio. Nat. Methods 6, 161–166 (2009).61 A. A. Heikal, Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomarkers Med. 4, 241–263 (2010).62 Y. P. Hung, J. G. Albeck, M. Tantama, G. Yellen, Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545–554 (2011).63 J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, Fluorescence lifetime imaging of free and protein-bound NADH. Proc. Natl. Acad. Sci. U.S.A. 89, 1271–1275 (1992).64 A. San Martn et al., Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS One 9, e85780 (2014).65 L. Boitard et al., Monitoring single-cell bioenergetics via the coarsening of emulsion droplets. Proc. Natl. Acad. Sci. U.S.A. 109, 7181–7186 (2012). Yang et al. https://doi.org/10.1073/pnas.2026786118 Physical bioenergetics: Energy fluxes, budgets, and constraints in cells Downloaded at Institute of Automation on July 18, 202166 S. Oh et al., In situ measurement of absolute concentrations by normalized Raman imaging. bioRxiv [Preprint] (2019). https://doi.org/10.1101/629543 (Accessed 13 October 2020).67 F. Hu et al., Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. Int. Ed. Engl. 54, 9821–9825 (2015).68 F. Monteiro et al., Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor. Mol. Syst. Biol. 15, e9071 (2019).69 M. Lynch, G. K. Marinov, The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. U.S.A. 112, 15690–15695 (2015).70 G. Mahmoudabadi, R. Phillips, M. Lynch, R. Milo, Defining the energetic costs of cellular structures. bioRxiv [Preprint] (2019). https://doi.org/10.1101/666040 (Accessed 31 December 2019).71 A. H. Stouthamer, A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39, 545–565 (1973).72 R. Phillips, R. Milo, A feeling for the numbers in biology. Proc. Natl. Acad. Sci. U.S.A. 106, 21465–21471 (2009).73 T.-L. Wang, B. Kuznets-Speck, J. Broderick, M. Hinczewski, The price of a bit: Energetic costs and the evolution of cellular signaling. bioRxiv [Preprint] (2020). https://doi.org/10.1101/2020.10.06.327700 (Accessed 28 March 2021).74 P. Mehta, D. J. Schwab, Energetic costs of cellular computation. Proc. Natl. Acad. Sci. U.S.A. 109, 17978–17982 (2012).75 R. Milo, R. Phillips, Cell Biology by the Numbers (Garland Science, 2016).76 J. Estrada, F. Wong, A. DePace, J. Gunawardena, Information integration and energy expenditure in gene regulation. Cell 166, 234–244 (2016).77 F. Wong, J. Gunawardena, Gene regulation in and out of equilibrium. Annu. Rev. Biophys. 49, 199–226 (2020).78 D. Zhang, Y. Cao, Q. Ouyang, Y. Tu, The energy cost and optimal design for synchronization of coupled molecular oscillators. Nat. Phys. 16, 95–100 (2020).79 R. Phillips, J. Kondev, J. Theriot, Physical Biology of the Cell (Garland Science, New York, 2008).80 W. Wieser, G. Krumschnabel, Hierarchies of ATP-consuming processes: Direct compared with indirect measurements, and comparative aspects. Biochem. J. 355, 389–395 (2001).81 G. C. Brown, Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J. 284, 1–13 (1992).82 H. Miyazawa, A. Aulehla, Revisiting the role of metabolism during development. Development 145, dev131110 (2018).83 Y. Song, S. Y. Shvartsman, Chemical embryology redux: Metabolic control of development. Trends Genet. 36, 577–586 (2020).84 F. Chi, M. S. Sharpley, R. Nagaraj, S. S. Roy, U. Banerjee, Glycolysis-independent glucose metabolism distinguishes TE from ICM fate during mammalian embryogenesis. Dev. Cell 53, 9–26.e4 (2020).85 E. Ilker, M. Hinczewski, Modeling the growth of organisms validates a general relation between metabolic costs and natural selection. Phys. Rev. Lett. 122, 238101 (2019).86 B. Ni, R. Colin, H. Link, R. G. Endres, V. Sourjik, Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 117, 595–601 (2020).87 M. Lynch, B. Trickovic, A theoretical framework for evolutionary cell biology. J. Mol. Biol. 432, 1861–1879 (2020).88 L. A. Hoekstra, K. L. Montooth, Inducing extra copies of the Hsp70 gene in Drosophila melanogaster increases energetic demand. BMC Evol. Biol. 13, 68 (2013).89 M. Szenk, K. A. Dill, A. M. R. de Graff, Why do fast-growing bacteria enter overflow metabolism? testing the membrane real estate hypothesis. Cell Syst. 5, 95–104 (2017).90 K. Zhuang, G. N. Vemuri, R. Mahadevan, Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol. 7, 500 (2011).91 M. Basan et al., Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).92 J. Li, J. M. Horowitz, T. R. Gingrich, N. Fakhri, Quantifying dissipation using fluctuating currents. Nat. Commun. 10, 1666 (2019).93 T. R. Gingrich, J. M. Horowitz, N. Perunov, J. L. England, Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116, 120601–120605 (2016).94 A. C. Barato, U. Seifert, Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015).95 P. Pietzonka, A. C. Barato, U. Seifert, Universal bound on the efficiency of molecular motors. J. Stat. Mech. 2016, 124004 (2016).96 J. A. Wagoner, K. A. Dill, Opposing pressures of speed and efficiency guide the evolution of molecular machines. Mol. Biol. Evol. 36, 2813–2822 (2019).97 J. Ninio, Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975).98 G. Shin, J. Wang, The role of energy cost on accuracy, sensitivity, specificity, speed and adaptation of T cell foreign and self recognition. Phys. Chem. Chem. Phys. 23, 2860–2872 (2021).99 A. C. Barato, D. Hartich, U. Seifert, Efficiency of cellular information processing. New J. Phys. 16, 103024 (2014).100 J. Park et al., Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity. eLife 8, e41266 (2019).101 Y. Tu, The nonequilibrium mechanism for ultrasensitivity in a biological switch: Sensing by Maxwell’s demons. Proc. Natl. Acad. Sci. U.S.A. 105, 11737–11741 (2008).102 G. Lan, Y. Tu, The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop. J. R. Soc. Interface 10, 20130489 (2013).103 Y. Cao, H. Wang, Q. Ouyang, Y. Tu, The free-energy cost of accurate biochemical oscillations. Nat. Phys. 11, 772–778 (2015).104 C. Fei, Y. Cao, Q. Ouyang, Y. Tu, Design principles for enhancing phase sensitivity and suppressing phase fluctuations simultaneously in biochemical oscillatory systems. Nat. Commun. 9, 1434 (2018).105 Y. Tu, Y. Cao, Design principles and optimal performance for molecular motors under realistic constraints. Phys. Rev. E 97, 022403 (2018).106 X. Fang, J. Wang, Nonequilibrium thermodynamics in cell biology: Extending equilibrium formalism to cover living systems. Annu. Rev. Biophys. 49, 227–246 (2020).107 X. Fang, K. Kruse, T. Lu, J. Wang, Nonequilibrium physics in biology. Rev. Mod. Phys. 91, 045004 (2019).108 J. Wang, Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Adv. Phys. 64, 1–137 (2015).109 J. Wang, L. Xu, E. Wang, Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. U.S.A. 105, 12271–12276 (2008).110 H. Ge, H. Qian, Physical origins of entropy production, free energy dissipation, and their mathematical representations. Phys. Rev. E 81, 051133 (2010).111 C. Nardini et al., Entropy production in field theories without time-reversal symmetry: Quantifying the non-equilibrium character of active matter. Phys. Rev. X 7, 021007–021020 (2017).112 J. M. R. Parrondo, J. M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).113 H. Qian, D. A. Beard, Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys. Chem. 114, 213–220 (2005).114 U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).115 S. Shankar, M. C. Marchetti, Hidden entropy production and work fluctuations in an ideal active gas. Phys. Rev. E 98, 020604 (2018).116 E. Fodor et al., Nonequilibrium dissipation in living oocytes. EPL 116, 30008 (2016).117 T. Harada, S. Sasa, Equality connecting energy dissipation with a violation of the fluctuation-response relation. Phys. Rev. Lett. 95, 130602–130604 (2005).118 C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).119 P. Pietzonka, E. Fodor, C. Lohrmann, M. E. Cates, U. Seifert, Autonomous engines driven by active matter: Energetics and design principles. Phys. Rev. X 9, 041032 (2019).120 T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Springer, 2005).121 D. A. Beard, S. D. Liang, H. Qian, Energy balance for analysis of complex metabolic networks. Biophys. J. 83, 79–86 (2002).122 D. A. Beard, E. Babson, E. Curtis, H. Qian, Thermodynamic constraints for biochemical networks. J. Theor. Biol. 228, 327–333 (2004).123 J. O. Park et al., Near-equilibrium glycolysis supports metabolic homeostasis and energy yield. Nat. Chem. Biol. 15, 1001–1008 (2019). Yang et al. Physical bioenergetics: Energy fluxes, budgets, and constraints in cells https://doi.org/10.1073/pnas.2026786118 Downloaded at Institute of Automation on July 18, 2021124 C. Battle et al., Broken detailed balance at mesoscopic scales in active biological systems. Science 352, 604–607 (2016).125 Q. Liu, J. Wang, Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics. Proc. Natl. Acad. Sci. U.S.A. 117, 923–930 (2020).126 J. Gladrow, N. Fakhri, F. C. MacKintosh, C. F. Schmidt, C. P. Broedersz, Broken detailed balance of filament dynamics in active networks. Phys. Rev. Lett. 116, 248301 (2016).127 A. Frishman, P. Ronceray, Learning force fields from stochastic trajectories. Phys. Rev. X 10, 021009 (2020).128 E. Roldan, J. Barral, P. Martin, J. M. R. Parrondo, F. Jülicher, Arrow of time in active fluctuations. arXiv [Preprint] (2018). https://arxiv.org/abs/1803.04743v4 (Accessed 2 August 2020).129 L. Zhao, J. Wang, Uncovering the mechanisms of Caenorhabditis elegans ageing from global quantification of the underlying landscape. J. R. Soc. Interface 13, 20160421 (2016).130 M. G. Vander Heiden, L. C. Cantley, C. B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).131 M. T. Lin, M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).132 J. Van Blerkom, Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11, 797–813 (2011).133 C. Li, J. Wang, Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proc. Natl. Acad. Sci. U.S.A. 111, 14130–14135 (2014).134 W. Li, J. Wang, Uncovering the underlying mechanisms of cancer metabolism through the landscapes and probability flux quantifications. iScience 23, 101002 (2020).135 L. Xu, J. Wang, Curl flux as a dynamical origin of the bifurcations/phase transitions of nonequilibrium systems: Cell fate decision making. J. Phys. Chem. B 124, 2549–2559 (2020).136 K. Zhang, J. Wang, Exploring the underlying mechanisms of the Xenopus laevis embryonic cell cycle. J. Phys. Chem. B 122, 5487–5499 (2018).137 A. San Martn et al., A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8, e57712 (2013).138 V. Deshpande, A. DeSimone, R. McMeeking, P. Recho, Chemo-mechanical model of a cell as a stochastic active gel. J. Mech. Phys. Solids 151, 104381 (2021).139 T. Markovich, E. Fodor, E. Tjhung, M. E. Cates, Thermodynamics of active field theories: Energetic cost of coupling to reservoirs. arXiv [Preprint] (2020). https:// arxiv.org/abs/2008.06735 (Accessed 12 October 2020).140 R. Pandey, S. Heeger, C. F. Lehner, Rapid effects of acute anoxia on spindle kinetochore interactions activate the mitotic spindle checkpoint. J. Cell Sci. 120, 2807–2818 (2007).141 D. A. Beard, A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput. Biol. 1, e36 (2005).142 B. Korzeniewski, J. A. Zoladz, A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys. Chem. 92, 17–34 (2001).143 I. Tavassoly, J. Goldfarb, R. Iyengar, Systems biology primer: The basic methods and approaches. Essays Biochem. 62, 487–500 (2018).144 M. Doi, Soft Matter Physics (Oxford University Press, 2013).145 J. N. Israelachvili, Intermolecular and Surface Forces (Elsevier, 2015).146 A. Baskaran, M. C. Marchetti, Hydrodynamics of self-propelled hard rods. Phys. Rev. E 77, 011920 (2008).147 A. Peshkov, E. Bertin, F. Ginelli, H. Chat ´e, Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models. Eur. Phys. J. Spec. Top. 223, 1315–1344 (2014).148 X. Yang, M. C. Marchetti, Hydrodynamics of turning flocks. Phys. Rev. Lett. 115, 258101–258105 (2015).149 S. Fürthauer, D. J. Needleman, M. J. Shelley, A design framework for actively crosslinked filament networks. New J. Phys. 23, 013012 (2021).150 B. Kooijman, S. A. L. M. Kooijman, Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge University Press, 2010).151 R. P. Hafner, G. C. Brown, M. D. Brand, Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolatedmitochondria using the ‘top-down’ approach of metabolic control theory. Eur. J. Biochem. 188, 313–319 (1990).152 K. Kornick, B. Bogner, L. Sutter, M. Das, Population dynamics of mitochondria in cells: A minimal mathematical model. Front. Phys. 7, 146 (2019).153 T. Taillefumier, A. Posfai, Y. Meir, N. S. Wingreen, Microbial consortia at steady supply. eLife 6, e22644 (2017).154 A. Wachtel, R. Rao, M. Esposito, Thermodynamically consistent coarse graining of biocatalysts beyond Michaelis–Menten. New J. Phys. 20, 042002 (2018).155 J. C. Aledo, A. E. del Valle, Glycolysis in wonderland: The importance of energy dissipation in metabolic pathways. J. Chem. Educ. 79, 1336–1339 (2002).156 H. V. Westerhoff, K. J. Hellingwerf, K. Van Dam, Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Proc. Natl. Acad. Sci. U.S.A. 80, 305–309 (1983).157 J. B. Russell, G. M. Cook, Energetics of bacterial growth: Balance of anabolic and catabolic reactions. Microbiol. Rev. 59, 48–62 (1995).158 A. Maitra, K. A. Dill, Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl. Acad. Sci. U.S.A. 112, 406–411 (2015).