causal-learn:基于Python的因果发现算法平台
Causal-learn,由CMU张坤老师主导,多个团队(CMU因果研究团队、DMIR实验室、宫明明老师团队和Shohei Shimizu老师团队)联合开发出品的因果发现算法平台。
Causal-learn用Python实现了CMU开发的基于Java的Tetrad因果发现平台(WAIC2020 SAIL 之 L奖),并进一步加入新的算法和功能。其中包含了因果发现的经典算法与API,并且提供了模块化的代码,以方便研究者实现自己的算法。Causal-learn所有模块均基于Python实现,从而避免了传统因果发现库对R/Java的依赖,为Python开发者提供便利。
Constrained-based causal discovery methods. Score-based causal discovery methods. Causal discovery methods based on constrained functional causal models. Hidden causal representation learning. Granger causal analysis. 多个独立的基础模块,比如独立性测试,评分函数,图操作,评测指标。 更多最新的因果发现算法,如gradient-based methods等。
GitHub: https://github.com/cmu-phil/causal-learn
文档: https://causal-learn.readthedocs.io/en/latest/
简单使用案例:https://github.com/cmu-phil/causal-learn/tree/main/tests
建议反馈: 郑雨嘉:yujiazh@cmu.edu,陈薇:chenweiDelight@gmail.com
平台介绍
平台介绍
1. 基于Python的统一算法框架
2. 经典算法的官方实现
3. 持续更新,掌握领域前沿
简单上手
简单上手
1. 安装
pip install causal-learn
G = pc(data, alpha, indep_test, stable, uc_rule, uc_priority, mvpc, correction_name, background_knowledge)
3. 可视化与评测
G.to_nx_graph()
G.draw_nx_graph(skel=False)
因果科学读书会第三季启动
由智源社区、集智俱乐部联合举办的因果科学与Causal AI读书会第三季,将主要面向两类人群:如果你从事计算机相关方向研究,希望为不同领域引入新的计算方法,通过大数据、新算法得到新成果,可以通过读书会各个领域的核心因果问题介绍和论文推荐快速入手;如果你从事其他理工科或人文社科领域研究,也可以通过所属领域的因果研究综述介绍和研讨已有工作的示例代码,在自己的研究中快速开始尝试部署结合因果的算法。读书自2021年10月24日开始,每周日上午 10:00-12:00举办,持续时间预计 2-3 个月。
详情请见:
因果+X:解决多学科领域的因果问题 | 因果科学读书会第三季启动
点击“阅读原文”,报名读书会