什么是有效场论 | 集智百科
本词条由集智俱乐部众包生产,难免存在纰漏和问题,欢迎大家留言反馈或者前往对应的百科词条页面进行修改,一经修改,可以获得对应的积分奖励噢!
目录
在物理学中,有效场论 Effective field theory是一种有效的近似理论,用于基础的物理理论,比如量子场论或者统计力学模型理论。有效场论用适当的自由度来描述特定距离尺度或能量尺度下发生的物理现象,而忽略在较小尺度上的子结构和自由度(或者相仿地,在较高的能量上)。直观地说,一个人可以用较短的长度尺度对潜在理论的结果取平均,从而得出一个在较长长度尺度下的简化模型。当研究者感兴趣的尺度与相互作用的基本尺度存在较大差异时,有效场论是最实用的。有效场论已经在粒子物理学、统计力学、凝聚态物理学、广义相对论和流体力学中得到了应用。它们简化了计算,并可以处理耗散和辐射效应。
重整化群
目前,有效场论是在重整化群 Renormalization group(RG)的背景下讨论的,重整化群使短距离自由度的积分过程变得系统化。尽管这种方法不够具体,无法实际构建有效场论,但通过RG分析,对其有用性的总体理解变得清晰。通过对对称性的分析,该方法也为构造有效场论的主要技术提供了依据。如果微观理论中只有一个质量尺度M,因此,有效场论可以看作是1/M的展开式。建立精确到1/M幂次的有效场理论需要在1/M阶展开的每一阶上都有一组新的自由参数。这种方法对于散射或其他最大动量标度k满足条件k/M≪1的过程是有用的。由于有效场论在小尺度下是无效的,所以它们不必是可重整化的。事实上,随着阶次升高,有效场论要求的参数数目不断增加,这意味着它们通常不像只需要两个参数即可重整化的量子电动力学那样可重整化。
有效场理论实例
贝塔衰变的费米理论
有效场理论最著名的例子是贝塔衰变费米理论。这个理论是在早期研究弱衰变核时发展起来的,当时物理学家只知道经历弱衰变的强子和轻子。研究的典型反应有:
这一理论假定参与这些反应的四个费米子之间的点状相互作用,在现象学上取得了巨大的成功,成为描述弱电相互作用的规范理论,它构成了粒子物理学标准模型的一部分。在这个更基本的理论中,相互作用是由一个可以改变味的规范玻色子w±介导的。费米理论的巨大成功是因为w粒子的质量约为80gev,而早期的实验都是在能量小于10mev的情况下进行的。这种差距超过了3个数量级,其他任何实验都难以达到。
超导理论
另一个著名的例子是超导现象的BCS理论。这里的基本理论是金属中的电子与声子相互作用。声子在一些电子之间引起吸引力的相互作用,导致它们形成库珀对。库珀对的长度比声子的波长大得多,因此可以忽略声子的动力学,建立两个电子在同一点上有效相互作用的理论。这个理论在描述和预测超导现象的实验结果方面取得了显著的成功。
重力中的有效场理论
广义相对论 General relativity本身有望成为完整的量子引力理论的低能有效场论,如弦论或回圈量子重力理论。膨胀尺度是普朗克质量。
有效场论也被用来简化广义相对论中的问题,特别是在计算有限大小的物体的引力波特征时。GR 中最常见的 EFT 是“非相对论广义相对论”(NRGR),它类似于后牛顿力学近似方法。另一个常见的 GR EFT 是极端质量比(EMR) ,在激励问题的背景下被称为 EMRI。
其他例子
目前,有效场理论是针对多种情况而编写的。
量子物理的一个主要分支是量子强子动力学,其中强子的相互作用被视为场理论,它应该从量子色动力学的基础理论中衍生出来。量子强子动力学是核力的理论,类似于量子色动力学是强相互作用的理论,量子电动力学是电磁力的理论。由于长度尺度的分离较小,这一有效理论具有一定的分类能力,但没有费米理论的惊人成功。
在粒子物理中,QCD中称为手征微扰理论的有效场论有更好的表现成功。这一理论研究强子与π或kaon的相互作用,它们是自发手征对称性破坏的Goldstein玻色子。膨胀参数是pion能量/动量。
对于含有一个重的夸克的强子(例如底或粲),一种以夸克质量为幂展开的有效场论,称为重夸克有效理论(HQET)。 对于含有两个重夸克的强子,以重夸克的相对速度为幂展开的有效场论很实用,称为非相对论性QCD(NRQCD),特别是在与晶格QCD结合时。
对于与光能(共线)粒子的强子反应,用软共线有效理论(SCET)描述了与低能(软)自由度的相互作用。
许多凝聚态物理都是为所研究的物质的特殊性质建立有效理论。 流体力学也可以使用有效场论进行处理
编者推荐
集智文章
耗散结构的特点是自发出现对称性破缺(各向异性)和形成复杂的、有时是混沌的结构,在这些结构中,相互作用的粒子展现出长程关联的性质。日常生活中的例子包括对流、湍流、旋风、飓风和生物体。较少见的例子包括激光、b 细胞、液滴簇和BZ反应 Belousov–Zhabotinsky reaction。
PRL前沿:重整化群和信息论的关联
在最近发表在 Physics Review Letters 的一篇文章中,研究人员报告了有助于解决这个问题的理论结果:他们建立了重整化群的场论相关性与信息瓶颈(information bottleneck,IB)理论定义的相关性概念之间的等价性。他们的分析表明,对于由场论描述的统计物理系统,使用IB理论发现的自由度确实对应于具有最低标度维数的算子。他们以数值方式证实了他们的场论预测。研究人员研究了IB算法对物理对称性的依赖性。他们的发现提供了一个连接两个不同理论的方法,以及一个在物理的深度学习应用中能够给出物理可解释性的例子。
重整化群:从微观到宏观,不同尺度的现象如何联系起来?
如何对复杂系统进行重整化?机器学习可以给你答案 | 傅渥成
百科项目志愿者招募
在这里从复杂性知识出发与伙伴同行,同时我们希望有更多志愿者加入这个团队,使百科词条内容得到扩充,并为每位志愿者提供相应奖励与资源,建立个人主页与贡献记录,使其能够继续探索复杂世界。
如果你有意参与更加系统精细的分工,扫描二维码填写报名表,我们期待你的加入!
来源:集智百科
编辑:王建萍
点击“阅读原文”,阅读词条有效场论原文与参考文献