大脑的动力学建模可以涵盖不同的时间和空间尺度。例如,微观尺度上神经元层面的神经元细胞膜模型(Hodgkin-Huxley),它描述神经元动作电位的启动和传播;宏观尺度上群体神经元层面的动力学模型(Neural Mass Model)和神经场模型(Neural Field Model)等,它描述脑区不同群体神经元的动态演化。上述模型均为平均场模型,可进一步拓展为基于结构耦合的全脑动力学模型,它描述跨脑区之间的信息传递。
臧蕴亮,目前工作在美国Brandeis University,计划于2022年返回国内。博士毕业于浙江大学生物医学工程系,博士课题是计算机心脏建模。博士后阶段加入日本冲绳OIST Erik De Schutter小组开始计算脑科学研究,2019年加入美国Brandeis University Eve Marder小组。研究重心是神经元特性及其在脑信息处理中关键作用,代表工作发表在PNAS、Cell Reports、ELife和Journal of Neuroscience等期刊上。
王大辉,北京师范大学系统科学学院、认知神经科学与学习国家实验室教授。分别于1997年和2002年获北京师范大学物理学学士和系统理论博士学位。从事复杂系统基础理论及其应用研究,特别关注神经系统的复杂性研究,目的是以神经环路为基础建立计算模型揭示实验中观察到的神经系统动力学行为的机制,展示神经系统达成特定功能的机理,并尝试将相关的机制应用于工程问题。通过计算模型发现神经连接的广度和强度决定了视觉工作记忆容量的机制,揭示知觉过程中典型现象如迟滞现象、速度-准确度替代、风险态度和主观概率的神经计算机制和参数工作记忆(触觉振动频率)的容量等。部分研究成果发表在Journal of Neuroscience, Plos computational Biology, Current psychology, Complexity, Frontiers in Computational Neuroscience, Neurocomputing等杂志。
Hodgkin, A.L. & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. (Lond.) 117, 500-544.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/?page=1JR Clay.(2009). Determining K+ channel activation curves from K+ channel currents often requires the Goldman–Hodgkin–Katz equation. Front. Cell. Neurosci.https://www.frontiersin.org/articles/10.3389/neuro.03.020.2009/fullG Drion, T O’Leary, E Marder. (2015). Ion channel degeneracy enables robust and tunable neuronal firing rates. Proceedings of the National Academy of Sciences 112 (38), E5361-E5370https://www.pnas.org/content/112/38/E5361Y Zang, E Marder. (2021). Interactions among diameter, myelination, and the Na/K pump affect axonal resilience to high-frequency spiking. Proceedings of the National Academy of Sciences 118 (32), e2105795118https://www.pnas.org/content/118/32/e2105795118A Gidon et al., (2020). Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science. 367 (6473), 83-87https://www.science.org/doi/abs/10.1126/science.aax6239
H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in random neural networks. Phys. Rev. Lett., 61:259–262, 1988.https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.61.259D. Dahmen, S. Gru ̈n, M. Diesmann, and M. Helias. Second type of criticality in the brain uncovers rich multiple-neuron dynamics. Proceedings of the National Academy of Sciences, 116(26):13051–13060, 2019.https://www.pnas.org/content/116/26/13051C. Keup, T. Ku ̈hn, D. Dahmen, and M. Helias. Transient chaotic dimensionality expansion by recurrent networks. Phys. Rev. X, 11:021064, Jun 2021.https://arxiv.org/abs/2002.11006
Gustavo Deco, Viktor Jirsa, Anthony R McIntosh, Olaf Sporns, Rolf Kötter,Key role of coupling, delay, and noise in resting brain fluctuations,PNAS,106 (25), 10302-10307https://www.pnas.org/content/106/25/10302.shortR Chaudhuri, K Knoblauch, MA Gariel, H Kennedy, XJ Wang,A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex, Neuron 88 (2), 419-431, 2015https://www.sciencedirect.com/science/article/pii/S0896627315007655G Deco, ML Kringelbach, Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders, Neuron 84 (5), 892-905https://www.sciencedirect.com/science/article/pii/S0896627314007351
Varier, S., & Kaiser, M. (2011). Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS computational biology, 7(1), e1001044.https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001044Beul, S.F., Goulas, A. and Hilgetag, C.C., 2018. Comprehensive computational modelling of the development of mammalian cortical connectivity underlying an architectonic type principle. PLoS computational biology, 14 (11), p.e1006550.https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006550Goulas, A., Betzel, R.F. and Hilgetag, C.C., 2019. Spatiotemporal ontogeny of brain wiring. Science advances, 5(6), p.eaav9694.https://www.science.org/doi/10.1126/sciadv.aav9694Shinn, M., Hu, A., Turner, L., Noble, S., Achard, S., Anticevic, A., Scheinost, D., Constable, R.T., Lee, D., Bullmore, E.T. and Murray, J.D., 2021. Spatial and temporal autocorrelation weave human brain networks. bioRxivhttps://www.biorxiv.org/content/10.1101/2021.06.01.446561v1.abstract
A. Phillips and P. Robinson. A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. Journal of Biological Rhythms, 22(2):167–179, 2007.https://pubmed.ncbi.nlm.nih.gov/17440218/P. A. Robinson, A. J. K. Phillips, B. D. Fulcher, M. Puckeridge, and J. A. Roberts. Quantitative modelling of sleep dynamics. Philos Trans A Math Phys Eng Sci, 369(1952):3840–54, Oct 2011.https://royalsocietypublishing.org/doi/10.1098/rsta.2011.0120Postnova, S. (2019). Sleep Modelling across Physiological Levels. Clocks & Sleep, 1(1), 166-184.https://www.mdpi.com/2624-5175/1/1/15
Cao, M., Galvis, D., Vogrin, S.J. et al. Virtual intracranial EEG signals reconstructed from MEG with potential for epilepsy surgery. Nat Commun 13, 994 (2022).
Wendling, F., Bartolomei, F., Mina, F., Huneau, C. & Benquet, P. Interictal spikes, fast ripples and seizures in partial epilepsies--combining multi-level computational models with experimental data. Eur. J. Neurosci. 36, 2164–77 (2012). https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2012.08039.xJirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I., Bernard, C., 2014. On the nature of seizure dynamics. Brain 137, 2210–2230.https://academic.oup.com/brain/article/137/8/2210/2847958Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215 (2016).https://www.nature.com/articles/srep29215Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319–332 (2017).https://academic.oup.com/brain/article/140/2/319/2736496
Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B. & Bassett, D. S. Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution. Neuron 91, 1170–82 (2016).
https://pubmed.ncbi.nlm.nih.gov/27568515/
Kini, L. G. et al. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain 142, 3892–3905 (2019).
Cabral J, Kringelbach M L, Deco G. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms[J]. NeuroImage, 2017, 160: 84-96.https://pubmed.ncbi.nlm.nih.gov/28343985/Kringelbach M L, Deco G. Brain states and transitions: insights from computational neuroscience[J]. Cell Reports, 2020, 32(10): 108128.https://www.sciencedirect.com/science/article/pii/S2211124720311177Stiso J, Khambhati A N, Menara T, et al. White matter network architecture guides direct electrical stimulation through optimal state transitions[J]. Cell reports, 2019, 28(10): 2554-2566. e7.https://www.sciencedirect.com/science/article/pii/S2211124719310411Muldoon S F, Pasqualetti F, Gu S, et al. Stimulation-based control of dynamic brain networks[J]. PLoS computational biology, 2016, 12(9): e1005076.https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005076Perich M G, Arlt C, Soares S, et al. Inferring brain-wide interactions using data-constrained recurrent neural network models[J]. bioRxiv, 2021: 2020.12. 18.423348.https://www.biorxiv.org/content/10.1101/2020.12.18.423348v2
Xiao-Jing Wang, Probabilistic Decision Making by Slow Reverberation in Cortical Circuits,Neuron,Volume 36(5),955-968(2002)https://doi.org/10.1016/S0896-6273(02)01092-9https://pubmed.ncbi.nlm.nih.gov/12467598/Lo, CC., Wang, XJ. Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat Neurosci 9, 956–963 (2006). https://doi.org/10.1038/nn1722https://www.nature.com/articles/nn1722Wong, Kong-Fatt, and Xiao-Jing Wang. “A recurrent network mechanism of time integration in perceptual decisions.” The Journal of neuroscience : the official journal of the Society for Neuroscience vol. 26,4 (2006): 1314-28. doi:10.1523/JNEUROSCI.3733-05.2006https://www.jneurosci.org/content/26/4/1314Yang, G.R., Joglekar, M.R., Song, H.F. et al. Task representations in neural networks trained to perform many cognitive tasks. Nat Neurosci 22, 297–306 (2019). https://doi.org/10.1038/s41593-018-0310-2https://www.nature.com/articles/s41593-018-0310-2 9. 【脉冲神经网络的应用】
Yu, Z., Liu, J. K., Jia, S., Zhang, Y., Zheng, J., Tian, Y., Huang, T., Toward the Next Generation of Retinal Neuroprosthesis: Visual Computation with Spikes. Engineering. 6:449-461 (2020)https://www.sciencedirect.com/science/article/pii/S2095809920300357 http://www.engineering.org.cn/ch/10.1016/j.eng.2020.02.004Gallego, G., et, al. Event-based vision: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(1):154-180 (2020) https://ieeexplore.ieee.org/abstract/document/9138762Wang M., et al. Single-neuron representation of learned complex sounds in the auditory cortex, Nature Communications, 11, 4361 (2020) https://www.nature.com/articles/s41467-020-18142-zRoy, K., Jaiswal, A., Panda, P., Towards spike-based machine intelligence with neuromorphic computing. Nature. 575:607-617 (2019)https://www.nature.com/articles/s41586-019-1677-2Hassabis, D., Kumaran, D., Summerfied, C., Botvinick, M., Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2):254-258 (2017)https://www.sciencedirect.com/science/article/pii/S0896627317305093
天桥脑科学研究院(Tianqiao and Chrissy Chen Institute,TCCI)是由陈天桥、雒芊芊夫妇私人出资10亿美元创建的,旨在支持、推进全球范围内脑科学研究,造福全人类。在国内,TCCI与上海周良辅医学发展基金会合作成立上海陈天桥脑健康研究所(又名TCCI转化中心),后又与华山医院、上海市精神卫生中心等建立战略合作并设立应用神经技术前沿实验室和人工智能与精神健康实验室,投入相关技术的直接开发和研究。在国际上,TCCI与加州理工学院合作成立TCCI加州理工研究院,重点关注大脑基础研究,并持续支持了全球各地的神经科学年会等学术会议。TCCI已经成为全球最知名和最大规模的支持人类脑科学研究的研究机构之一。
OpenScience是民间组织Chinese Open Science Network (COSN)发起的公众号平台,致力于普及科学研究中严谨、开放和可重复性的理念。对数据共享、研究方法、团队科学、方法与实验革新等主题进行介绍,目前包括如下活动:OpenTalks学术讲座、OpenMinds文献研读、OpenTutorials在线方法讲座、OpenTrans翻译/搬运优质英文方法论文及博客。我们的目标是与更多同行一起,拥抱开放的科研文化、提升研究的严谨性、尝试新时代的科学交流与实践方式。