在《物理学如何成为心智的基础?》(How Can Physics Underlie the Mind?,Ellis 2016),埃利斯提供了一个令人信服的案例,证明自上而下的因果关系在科学(特别是物理学、生物学、计算机科学和认知科学)及其他领域的重要性。这是一项范围广泛的工作,但有一个非常清晰的论点,并得到了各种例子的支持。简而言之,他的这项工作不仅强调我们所熟悉的自下而上因果关系(从基本物理层面到非物理领域)的重要性,还特别强调了是自上而下的因果关系(从心理到物理)在表征中的重要性的层次结构。正如埃利斯所说:
正是自下而上和自上而下的因果关系的结合,才使得真正复杂的行为从组合在一起的简单组件中涌现出来,形成了模块化的分层结构。除了自下而上的因果关系,自上而下的因果关系也发生在这些结构中[......]通过语境在决定较低层次因果关系结果中的关键作用。(Ellis 2016, p. 5; italics added)
测量完全属于表示的标题,而测量输出在某个阶段被设想为以观察性描绘的方式在选择性相似性上进行交易。(van Fraassen 2008, p. 91)
透视绘图提供了一种将三维场景转换或转移为二维表面的特定技术。该技术涉及一个过程,实现正确结果所涉及的步骤,以及产品,最终图纸,实现到透视。两者都与测量密切相关。根据 van Fraassen 的说法:
透视绘图为我们提供了一个测量的范例。绘制过程产生绘制对象的表示,该表示有选择地仿造该对象;这种相似性立即处于相当高的抽象水平,但却涌现在人们的眼睛里。虽然有关空间配置的信息以一种固定关系捕获,很难用单词或方程式来表示,但它以用户友好的方式传达给我们。这个例子也是典型的,因为它显示得如此清晰,以至于表示(测量结果)显示的不是物体“本身”的样子,而是它在测量设置中的“样子”。所用测量仪器的用户必须以“从这里开始”的形式判断结果。最后,硬币还有另一面:正是通过一个过程产生了这种形式的判断——也就是说,通过一种测量!——任何模型才变得可用。(van Fraassen 2008, pp. 91–92)
有趣的是,透视图中的观察者选择描绘场景的角度,测量结果,即绘图本身,将显示从该角度看场景的样子:“这就是从这里开始的样子”。该角度的选择(场景的取景)对应于测量的准备形式,并且由此产生的选择性(仅从观察者的角度可以看到的内容显示在绘图上)为测量结果提供了情境。通过这种方式,埃利斯在测量中确定的两种形式的自上而下的因果关系(2016, pp. 273–274)似乎都存在于透视图中。 继续讨论量子力学中的测量,埃利斯指出:
在这里,我们所说的测量,我们指的是一个过程,在这个过程中,量子不确定性被改变成一个确定的经典结果,可以作为所发生事情的证据进行记录和检查。(Ellis 2016, p. 247)
观察者没有必要实际进行任何测量。例如,当光子落在物理物体(如屏幕,照相板或植物的叶子)上,并在特定时间和地点将能量沉积在物体上的特定点上时,就会发生这种情况。用更专业的术语来说,当一般波函数的某个分量坍缩为算子的特征状态时,它通常发生[ . . . ]。(Ellis 2016, p. 247)
毫无疑问,为了使测量产生相关信息,它们必须是合适的物理过程。如果没有适当的物理相互作用,尚不清楚是否可以进行测量。但是,在观察者解码相关信息之前,测量将无法产生任何此类结果。如果测量涉及“有意义的信息收集过程”(van Fraassen 2008, p. 91),那么似乎需要有意的观察者。否则,只会发生物理交互,而不是测量。埃利斯明确强调了自上而下的因果关系在测量中发挥的作用,鉴于上文讨论的观察者在测量中可以产生的两种影响,似乎要求观察者在测量过程中发挥作用:它们使状态矢量准备成为可能,并为测量结果提供背景(Ellis 2016, pp. 273–274)。 在一定程度上,这一点是埃利斯本人所强调的。正如他所指出的那样:
我们无法对测量过程本身发表意见,因为量子物理学仍然无法解释这是如何发生的。这也可能取决于具体情境。显而易见的是,局部环境(例如使用哪种类型的实验设备)会影响量子测量结果[ . . . ]例如,如果我们测量自旋,则最终状态与我们测量动量时不同。较低级别的物理学不能免受更高层次的影响。(Ellis 2016, p. 239)
量子理论的一个基本方面是测量结果的不确定性是无法解决的:原则上甚至不可能获得足够的数据来确定量子事件的独特结果[...]。这种不可预测性不是缺乏信息的结果:它是基础物理学的本质。这种不确定性在测量发生时表现出来,而且只有到那时。没有测量,量子过程就没有不确定性。(Ellis 2016, p. 247)
埃利斯在这里回应了安东尼·莱格特强调的一点:
[ . . . ]测量行为是微观世界与宏观世界之间的桥梁,微观世界本身并不具有确定的属性。(Leggett 1991, p. 87;引自 Ellis 2016, p. 247)
Bell, J. L. (2009). The axiom of choice. London: College Publications.
Bueno, O. (2005). Dirac and the dispensability of mathematics. Studies in History and Philosophy of Modern Physics, 36, 465–490.
Bueno, O., & French, S. (2018). Applying mathematics: Immersion, inference, interpretation. Oxford: Oxford University Press.
Colyvan, M. (2001). The indispensability of mathematics. New York: Oxford University Press.
Ellis, G. (2016). How can physics underlie the mind? Top-down causation in the human context. Berlin: Springer.
Hale, B. (1987). Abstract objects. Oxford: Blackwell. Kanamori, A. (1997). The mathematical import of Zermelo's well-ordering theorem. Bulletin of Symbolic Logic, 3, 281–311.
Leggett, A. J. (1991). Reflections on the quantum measurement paradox. In B. J. Hiley & F. D. Peat (Eds.), Quantum implications: Essays in Honour of David Bohm (pp. 85–104). London: Routledge.
Lewis, D. (1986). On the plurality of worlds. Oxford: Blackwell.
Lopes, D. (2018). Aesthetics on the edge: Where philosophy meets the human sciences. Oxford: Oxford University Press.
Popper, K. (1972). Objective knowledge: An evolutionary approach (Rev. ed., 1979). Oxford: Oxford University Press.
van Fraassen, B. C. (2008). Scientific representation: Paradoxes of perspective. Oxford: Oxford University Press.
Zermelo, E. (1904). Neuer Beweis, dass jede Menge Wohlordnung werden kann (Aus einem an Herrn Hilbert gerichteten Briefe). Mathematische Annalen, 59, 514–516. (English translation in J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879– 1931 (pp. 139–141). Cambridge, MA: Harvard University Press, 1967).
Zermelo, E. (1908). Untersuchungen uber die Grundlagen der Mengenlehre. Mathematische Annalen, 65, 107–128. (English translation in J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 199–215). Cambridge, MA: Harvard University Press, 1967).
(参考文献可上下滑动查看)
Entropy 特刊征稿:因果关系与复杂系统
如何从一个复杂系统的原始数据中发现错综复杂的因果结构并识别因果涌现?如何利用因果机制推断系统未来的状态和演化?机器学习、互信息分解、因果推断等新兴技术将为我们提供新的解决方案。由北京师范大学系统科学学院张江教授与清华大学计算机科学学院崔鹏副教授合作在Entropy杂志发起的Causality and Complex Systems特刊正在征稿中,欢迎对相关话题感兴趣的研究者投稿。