这篇文献利用深度学习网络来研究视觉系统的文章,是这一领域的开山之作。[1] Yamins, Daniel LK, et al. "Performance-optimized hierarchical models predict neural responses in higher visual cortex." Proceedings of the national academy of sciences 111.23 (2014): 8619-8624. 这篇文献是发起人老师鲍平磊2020年的一项研究,利用深度网络对物体识别区域功能组织原则的探索。[2] Bao, Pinglei, et al. "A map of object space in primate inferotemporal cortex." Nature 583.7814 (2020): 103-108. 这篇文献研究说明无监督的深度神经网络也可以用来对腹侧视觉通路建模。[3] Zhuang, Chengxu, et al. "Unsupervised neural network models of the ventral visual stream." Proceedings of the National Academy of Sciences 118.3 (2021): e2014196118. 这篇文献研究发现前馈网络可能并不足够描述腹侧通路,可能还需要循环神经网络。[4] Kar, Kohitij, et al. "Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior." Nature neuroscience 22.6 (2019): 974-983. 这篇文献使用深度生成网络进化的神经元图像揭示了视觉编码原理和神经元偏好。[5] Ponce, C. R., Xiao, W., Schade, P. F., Hartmann, T. S., Kreiman, G., & Livingstone, M. S. (2019). Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell, 177(4), 999-1009.