社交媒体中的身份效应:决定你点赞的是内容还是人?
导语
人们的各种活动在网络上留下大量身份线索(Identity cues),这些身份线索有可能进一步用来识别真实身份。这提出了一些重要的问题:人们的网络观点和在线行为多大程度上受到用户身份的影响?近日发表于 Nature Human Behaviour 期刊的最新研究,使用大规模实地实验,评估了社交媒体上的身份线索如何塑造内容消费和反馈机制。该研究对互联网平台治理、监管、实名制和算法设计具有启发意义。
关键词:网络观点动力学,网络实名,马太效应,互联网平台管理,排序算法
Sean J. Taylor, Lev Muchnik, Madhav Kumar, Sinan Aral | 作者
刘培源、刘志航 | 译者
邓一雪 | 编辑
论文题目:
Identity effects in social media
论文链接:https://www.nature.com/articles/s41562-022-01459-8
1. 概述
2. 结果
3. 平台启示
4. 讨论
摘要
摘要
如今,身份线索(Identity cues)与社交媒体中的内容一起无处不在。一些人还建议用真实姓名和其他身份线索进行统一识别,作为对网上有害行为的有效威慑。不幸的是,我们对身份线索如何影响网络观点和在线行为知之甚少。在这里,我们使用了一个大规模的纵向实地实验来评估身份线索在多大程度上影响人们对在线内容的看法以及与在线内容的互动。我们将社交新闻聚合网站上生成的内容随机分配到“已识别”和“匿名”条件下,以评估身份线索对观众如何投票和回复内容的因果影响。身份线索的影响是显著的和且具有异质的,解释了与评论者的生产、声誉和互惠相关的投票中28%至61%的变化。我们的结果还表明,身份线索会促使人们更快地对内容进行投票(与启发式处理一致),并根据内容制作者的声誉、制作历史和内容观众的相互投票进行投票。这些结果提供了证据表明,富者愈富的动力学和社会内容评估中的不平等是由身份线索介导的。他们还提供了在线社区状态演变的见解。从实践的角度来看,我们通过模拟表明,社交平台可以通过将匿名内容的投票作为排名信号来提高内容质量。本文对于互联网平台治理、监管、实名制和算法设计具有启发意义。
1. 概述
1. 概述
2. 结果
2. 结果
(1) 生产量Production:评论者在观众接触到某评论之前的L天内所写的评论数量。对于L=3即前三天中,评论生产量通常在0到100之间变化,评论者生产量的分布也有一个可达200以上的长尾。
(2) 声誉量Reputation:在观众接触到某评论之前的L天内,评论者在其评论上得到的平均分数(赞成投票减去反对投票)。这个衡量标准倾向于介于一个小的负值(对于写过反对票的评论者)和一个小于10的中等的正值之间。
图1:调节协变量的值与身份对交互的影响之间的关联。每个 y 刻度都有不同的范围。每个点都是协变量的分箱值(binned value),y 轴表示该分箱内的处理效果。分箱之间的样本大小差异很大。最佳拟合线由对每个分箱有贡献的观测值的数量加权,大致与表 1 中显示的斜率相同(但不完全是因为忽略了固定效应)。N =12,583,408 用于描述产量和声誉。N =1,094,177 表示互惠性。
图2:投票持续时间的分布和估计的身份效应。a,以投票发生为条件的投票持续时间的核密度估计值。b,固定效应回归的估计值,用于测量身份二元变量的影响,代表投票是否在某个阈值内发生。当身份信息出现时,观众在5秒内投票的可能性增加0.1%,在7秒内投票的可能性增加近0.2%(绝对值)。误差条代表95%置信区间CI,标准误差聚集在浏览者层面。N=672,464.
3. 平台启示
3. 平台启示
图3:算法排名模拟。垂直面板显示了用户根据一个月期间收集的反馈对排名靠前的评论的前 50、100 和 200 条评论生成的模拟匿名反馈。我们通过设置参数 α ∈ [0, 1] 来权衡提高赞成票和限制反对票,该参数沿图的 x 轴变化。更好的策略往往会在每条评论中获得更多的赞成票和更少的反对票。我们得出结论,基于对已识别身份的评论的投票进行排名对于赞成票(上图)同样具有信息效应,但对匿名评论使用评级对于限制收到匿名反对票的评论(下图)更具信效应。
表2:实验汇总统计。虚线表示我们无法通过处理状态来计算该统计数据。
图4. 实验中每个月的身份的平均处理效果。固定效应模型估计在实验期间每个月对赞成、反对和回复的平均处理效果。线条表示 95% 置信区间CI。标准误差聚集在浏览者-评论者层面。N = 12,583,408。
图5. 因果图,指示我们测试的干扰以及我们通过假设排除的类型。在这里,处理状态Dj1有三个潜在的效果。首先是Yij1,直接效应(实线)和本文的主要关注点。其次是Yi'j2,对观众对同一篇文章的相邻评论行为的溢出效应(虚线)。第三,关于Yi'j3,(更间接的)溢出效应(虚线)对观众对其他文章的评论的行为。我们将干扰部分用于理解第二种效应,并假设第三种效应不存在。
4. 讨论
4. 讨论
参考文献
1. Burns, W. Is it time to require identity verification for everyone using social media? Forbeshttps://www.forbes.com/sites/willburns/2018/02/22/is-it-time-to-require-identity-verification-for-everyone-using-social-media/?sh=74308aec8683 (2018).
2. Salganik, M. J. & Watts, D. J. Leading the herd astray: an experimental study of self-fulfilling prophecies in an artificial cultural market. Soc. Psychol. Q.71, 338–355 (2008).
3. Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D. How social influence can undermine the wisdom of crowd effect. Proc. Natl Acad. Sci. USA108, 9020–9025 (2011).
4. Muchnik, L., Aral, S. & Taylor, S. J. Social influence bias: a randomized experiment. Science341, 647–651 (2013).
5. Chaiken, S. Heuristic versus systematic information processing and the use of source versus message cues in persuasion. J. Pers. Soc. Psychol.39, 752–766 (1980).
6. Chaiken, S. in Social Influence: The Ontario Symposium Vol. 5 (eds Zanna, M. P. et al.) 3–39 (Lawrence Erlbaum Associates, 1987).
7. Hass, R. G. in Cognitive Responses in Persuasion Vol. 2 (eds Petty, R. E. et al.) Ch. 7 (Lawrence Erlbaum Associates, 1981); https://doi.org/10.4324/9781315803012
8. Walther, J. B. Relational aspects of computer-mediated communication: experimental observations over time. Organ. Sci.6, 186–203 (1995).
9. Walther, J. B. Computer-mediated communication: impersonal, interpersonal, and hyperpersonal interaction. Commun. Res.23, 3–43 (1996).
10. Resnick, P., Kuwabara, K., Zeckhauser, R. & Friedman, E. Reputation systems. Commun. ACM43, 45–48 (2000).
11. Pavlou, P. A. & Gefen, D. Building effective online marketplaces with institution-based trust. Inf. Syst. Res.15, 37–59 (2004).
12. Moon, J. Y. & Sproull, L. S. The role of feedback in managing the Internet-based volunteer work force. Inf. Syst. Res.19, 494–515 (2008).
13. Wetzer, I. M., Zeelenberg, M. & Pieters, R. “Never eat in that restaurant, I did!”: exploring why people engage in negative word-of-mouth communication. Psychol. Mark.24, 661–680 (2007).
14. Wood, W. Attitude change: persuasion and social influence. Annu. Rev. Psychol.51, 539–570 (2000).
15. Cialdini, R. B. & Trost, M. R. Social Influence: Social Norms, Conformity and Compliance. The handbook of social psychology, McGraw-Hill, 151–192 (1998).
16. Chaiken, S., Wood, W. & Eagly, A. H. Principles of Persuasion. Social psychology: Handbook of basic principles. Guilford, 702–742 (1996).
17. Chen, S., Shechter, D. & Chaiken, S. Getting at the truth or getting along: accuracy- versus impression-motivated heuristic and systematic processing. J. Pers. Soc. Psychol.71, 262–275 (1996).
18. Lundgren, S. R. & Prislin, R. Motivated cognitive processing and attitude change. Pers. Soc. Psychol. Bull.24, 715–726 (1998).
19. Petty, R. E. & Wegener, D. T. Matching versus mismatching attitude functions: implications for scrutiny of persuasive messages. Pers. Soc. Psychol. Bull.24, 227–240 (1998).
20. Tajfel, H. Social psychology of intergroup relations. Annu. Rev. Psychol.33, 1–39 (1982).
21. Turner, J. C. Social Influence (Thomson Brooks/Cole, 1991).
22. Flache, A. Models of social influence: towards the next frontiers. J. Artif. Soc. Soc. Simul.https://doi.org/10.18564/jasss.3521 (2017).
23. Aral, S. & Walker, D. Creating social contagion through viral product design: a randomized trial of peer influence in networks. Manag. Sci.57, 1623–1639 (2011).
24. Aral, S. & Walker, D. Identifying influential and susceptible members of social networks. Science337, 337–341 (2012).
25. Bakshy, E., Eckles, D., Yan, R. & Rosenn, I. Social influence in social advertising: evidence from field experiments. In Proc. 13th ACM Conference on Electronic Commerce 146–161 (ACM, 2012); https://doi.org/10.1145/2229012.2229027
26. Aral, S. & Walker, D. Tie strength, embeddedness, and social influence: a large-scale networked experiment. Manag. Sci.60, 1352–1370 (2014).
27. Tucker, C. Social Advertising: How Advertising that Explicitly Promotes Social Influence Can Backfire. SSRNhttps://doi.org/10.2139/ssrn.1975897 (2016).
28. Bakshy, E., Rosenn, I., Marlow, C. & Adamic, L. The role of social networks in information diffusion. In Proc. 21st International Conference on World Wide Web 519–528 (ACM, 2012).
29. Bapna, R. & Umyarov, A. Do your online friends make you pay? A randomized field experiment on peer influence in online social networks. Manag. Sci.61, 1902–1920 (2015).
30. Luc, J. G. Y. et al. Does tweeting improve citations? One-year results from the TSSMN prospective randomized trial. Ann. Thorac. Surg.111, 296–300 (2021).
31. Forman, C., Ghose, A. & Wiesenfeld, B. Examining the relationship between reviews and sales: the role of reviewer identity disclosure in electronic markets. Inf. Syst. Res.19, 291–313 (2008).
32. Ma, M. & Agarwal, R. Through a glass darkly: information technology design, identity verification, and knowledge contribution in online communities. Inf. Syst. Res.18, 42–67 (2007).
33. Shalizi, C. R. & Thomas, A. C. Homophily and contagion are generically confounded in observational social network studies. Sociol. Methods Res.40, 211–239 (2011).
34. Toubia, O. & Stephen, A. T. Intrinsic vs. image-related utility in social media: why do people contribute content to twitter? Mark. Sci.32, 368–392 (2013).
35. Taylor, S. J., Bakshy, E. & Aral, S. Selection effects in online sharing: consequences for peer adoption. In ACM Conference on Electronic Commerce 821–836 (ACM, 2013); https://doi.org/10.1145/2492002.2482604
36. Bertrand, M. & Mullainathan, S. Are Emily and Greg more employable than Lakisha and Jamal? A field experiment on labor market discrimination. Am. Econ. Rev.94, 991–1013 (2004).
37. Edelman, B., Luca, M. & Svirsky, D. Racial discrimination in the sharing economy: evidence from a field experiment. Am. Econ. J. Appl. Econ.9, 1–22 (2017).
38. Hu, N., Zhang, J. & Pavlou, P. A. Overcoming the J-shaped distribution of product reviews. Commun. ACM52, 144–147 (2009).
39. Kahneman, D., Sibony, O. & Sunstein, C. R. Noise: A Flaw in Human Judgment (Little, Brown, 2021).
40. Bourdieu, P. in: Handbook for Theory and Research for the Sociology of Education(ed. Richardson, J.). Greenwood Press, 241–258 (1986).
41. Throsby, D. Cultural capital. J. Cult. Econ.23, 3–12 (1999).
42. Putnam, R. The prosperous community: social capital and public life. The American Prospecthttps://prospect.org/infrastructure/prosperous-community-social-capital-public-life (1993).
43. Lin, C.-S. & Chen, Y.-F. Examining social tagging behaviour and the construction of an online folksonomy from the perspectives of cultural capital and social capital. J. Inf. Sci.38, 540–557 (2012).
44. Simon, H.A. On a class of skew distribution functions. Biometrika42, 425–440 (1955).
45. Merton, R. K. The Matthew effect in science. Science159, 56–63 (1968).
46. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science286, 509–512 (1999).
47. Salganik, M. J., Dodds, P. S. & Watts, D. J. Experimental study of inequality and unpredictability in an artificial cultural market. Science311, 854–856 (2006).
48. Van de Rijt, A. Self-correcting dynamics in social influence processes. Am. J. Sociol.124, 1468–1495 (2019).
49. Berry, G. & Taylor, S. J. Discussion quality diffuses in the digital public square. In Proc. 26th International Conference on World Wide Web 1371–1380 (ACM, 2017); https://doi.org/10.1145/3038912.3052666
50. Taylor, S. J. & Eckles, D. in Complex Spreading Phenomena in Social Systems (eds Lehmann, S. & Ahn, Y. Y.) 289–322 (Springer, 2018); https://doi.org/10.1007/978-3-319-77332-2_16
51. Sun, T. & Taylor, S. J. Displaying things in common to encourage friendship formation: a large randomized field experiment. Quant. Mark. Econ.18, 237–271 (2020).
(参考文献可上下滑动查看)
复杂科学最新论文
推荐阅读
跨越网络的门槛:社交媒体上的信息扩散 当社交媒体变成「炒作机器」,我们该如何思考? 社交媒体让我们的交流更加平等了吗? 《张江·复杂科学前沿27讲》完整上线! 成为集智VIP,解锁全站课程/读书会 加入集智,一起复杂!