查看原文
其他

记一次非常有趣的MySQL调优经历。

前语:不要为了读文章而读文章,一定要带着问题来读文章,勤思考。在此,建议大家为本公众号加“星标”。如文章写得好,望大家阅读后在右下边“在看”处点个赞,以示鼓励!

作者:风过无痕-唐  来源:http://t.cn/ECwXT5u


# 场景


我用的数据库是mysql5.6,下面简单的介绍下场景。


课程表

create table Course(c_id int PRIMARY KEY,name varchar(10))

数据100条。


学生表

create table Student(id int PRIMARY KEY,name varchar(10))

数据70000条。


学生成绩表

CREATE table SC( sc_id int PRIMARY KEY, s_id int, c_id int, score int)

数据70w条。


查询目的:查找语文考100分的考生。


查询语句如下。

select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )

执行时间:30248.271s 。


晕,为什么这么慢,先来查看下查询计划。

EXPLAIN
select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )

发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。


先给sc表的c_id和score建个索引。

CREATE index sc_c_id_index on SC(c_id);CREATE index sc_score_index on SC(score);

再次执行上述查询语句,时间为: 1.054s。


快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要,很多时候都忘记建


索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。


但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划。

查看优化后的sql。

SELECT `YSB`.`s`.`s_id` AS `s_id`, `YSB`.`s`.`name` AS `name`FROM `YSB`.`Student` `s`WHERE < in_optimizer > ( `YSB`.`s`.`s_id` ,< EXISTS > ( SELECT FROM `YSB`.`SC` `sc` WHERE ( (`YSB`.`sc`.`c_id` = 0) AND (`YSB`.`sc`.`score` = 100) AND ( < CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id` ) ) ) )

补充:这里有网友问怎么查看优化后的语句


方法如下:

在命令窗口执行:

有type=all


按照我之前的想法,该sql的执行的顺序应该是先执行子查询。

select s_id from SC sc where sc.c_id = 0 and sc.score = 100

耗时:0.001s。


得到如下结果。

然后再执行

select s.* from Student s where s.s_id in(7,29,5000)

耗时:0.001s。


这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,


mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*8次。


那么改用连接查询呢?

SELECT s.* from Student sINNER JOIN SC scon sc.s_id = s.s_idwhere sc.c_id=0 and sc.score=100

这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index。


执行时间是:0.057s。


效率有所提高,看看执行计划:

这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引。

CREATE index sc_s_id_index on SC(s_id);show index from SC

在执行连接查询。


时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划:

优化后的查询语句为:

SELECT `YSB`.`s`.`s_id` AS `s_id`, `YSB`.`s`.`name` AS `name`FROM `YSB`.`Student` `s`JOIN `YSB`.`SC` `sc`WHERE ( ( `YSB`.`sc`.`s_id` = `YSB`.`s`.`s_id` ) AND (`YSB`.`sc`.`score` = 100) AND (`YSB`.`sc`.`c_id` = 0) )

貌似是先做的连接查询,再进行的where条件过滤


回到前面的执行计划:

这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:

正常情况下是先join再进行where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where。


过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql。

SELECT s.*FROM ( SELECT * FROM SC sc WHERE sc.c_id = 0 AND sc.score = 100 ) tINNER JOIN Student s ON t.s_id = s.s_id

即先执行sc表的过滤,再进行表连接,执行时间为:0.054s。


和之前没有建s_id索引的时间差不多。


查看执行计划:

先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引。

CREATE index sc_c_id_index on SC(c_id);CREATE index sc_score_index on SC(score);

再执行查询:

SELECT s.*FROM ( SELECT * FROM SC sc WHERE sc.c_id = 0 AND sc.score = 100 ) tINNER JOIN Student s ON t.s_id = s.s_id

执行时间为:0.001s,这个时间相当靠谱,快了50倍


执行计划:

我们会看到,先提取sc,再连表,都用到了索引。


那么再来执行下sql。

SELECT s.* from Student sINNER JOIN SC scon sc.s_id = s.s_idwhere sc.c_id=0 and sc.score=100

执行时间0.001s。


执行计划:

这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。


最近,又重新导入一些生产数据,经测试发现,前几天优化完的sql执行效率又变低了。


调整内容为SC表的数据增长到300W,学生分数更为离散。


先回顾下:

show index from SC

执行sql。

SELECT s.* from Student sINNER JOIN SC scon sc.s_id = s.s_idwhere sc.c_id=81 and sc.score=84

执行时间:0.061s,这个时间稍微慢了点。


执行计划:

这里用到了intersect并集操作,即两个索引同时检索的结果再求并集,再看字段score和c_id的区分度,单从一个字段看,区分度都不是很大,从SC表检索,c_id=81检索的结果是70001,score=84的结果是39425。而c_id=81 and score=84 的结果是897,即这两个字段联合起来的区分度是比较高的,因此建立联合索引查询效率。将会更高,从另外一个角度看,该表的数据是300w,以后会更多,就索引存储而言,都是不小的数目,随着数据量的。增加,索引就不能全部加载到内存,而是要从磁盘去读取,这样索引的个数越多,读磁盘的开销就越大,因此根据具体。


业务情况建立多列的联合索引是必要的,那么我们来试试吧。

alter table SC drop index sc_c_id_index;alter table SC drop index sc_score_index;create index sc_c_id_score_index on SC(c_id,score);

执行上述查询语句,消耗时间为:0.007s,这个速度还是可以接收的


执行计划:

该语句的优化暂时告一段落。


总结


  1. mysql嵌套子查询效率确实比较低

  2. 可以将其优化成连接查询

  3. 连接表时,可以先用where条件对表进行过滤,然后做表连接(虽然mysql会对连表语句做优化)

  4. 建立合适的索引,必要时建立多列联合索引

  5. 学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要


#索引优化


上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引。


后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。


# 单列索引


查询语句如下:

select * from user_test_copy where sex = 2 and type = 2 and age = 10

索引:

CREATE index user_test_index_sex on user_test_copy(sex);CREATE index user_test_index_type on user_test_copy(type);CREATE index user_test_index_age on user_test_copy(age);

分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s


执行计划:

发现type=index_merge


这是mysql对多个单列索引的优化,对结果集采用intersect并集操作。


# 多列索引


我们可以在这3个列上建立多列索引,将表copy一份以便做测试。

create index user_test_index_sex_type_age on user_test(sex,type,age);

查询语句:

select * from user_test where sex = 2 and type = 2 and age = 10

执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多


执行计划:


# 最左前缀


多列索引还有最左前缀的特性。


执行一下语句:

select * from user_test where sex = 2select * from user_test where sex = 2 and type = 2select * from user_test where sex = 2 and age = 10

都会使用到索引,即索引的第一个字段sex要出现在where条件中。


# 索引覆盖


就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可


如:

select sex,type,age from user_test where sex = 2 and type = 2 and age = 10

执行时间:0.003s


要比取所有字段快的多。


# 排序


select * from user_test where sex = 2 and type = 2 ORDER BY user_name

时间:0.139s


在排序字段上建立索引会提高排序的效率。

create index user_name_index on user_test(user_name)


# 一些sql调优的总结


  1. 列类型尽量定义成数值类型,且长度尽可能短,如主键和外键,类型字段等等

  2. 建立单列索引

  3. 根据需要建立多列联合索引。当单个列过滤之后还有很多数据,那么索引的效率将会比较低,即列的区分度较低,那么如果在多个列上建立索引,那么多个列的区分度就大多了,将会有显著的效率提高。

  4. 根据业务场景建立覆盖索引。只查询业务需要的字段,如果这些字段被索引覆盖,将极大的提高查询效率

  5. 多表连接的字段上需要建立索引,这样可以极大的提高表连接的效率

  6. where条件字段上需要建立索引

  7. 排序字段上需要建立索引

  8. 分组字段上需要建立索引

  9. where条件上不要使用运算函数,以免索引失效



看到这里还没过瘾,那么就来群里与更多的同学交流切磋技术,戳这里:咱们来一起抱团取暖,好吗?


---END---



热文推荐

面试题:在分布式系统,你能想出来几种生成唯一ID的方案?

面试官:给我说说你对Java GC机制的理解?

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存