这些常见的功率器件,你懂多少?
微信公众号:机械工业出版社E视界
点击上方蓝字关注我们,转发本文至朋友圈,并将截图发给小编(ID:tz043010120),即可获得炫酷手电!数量有限,送完为止!
电工
电子
电气
周五 电力
导读
随着半导体功率开关器件的发展与改进,降低了对电压、电流、功率以及频率进行控制的成本。同时,随着集成电路、微处理器及超大规模集成电路(VLSI)在控制电路里的使用,大大提高了其控制的精度。一些常见的功率器件,如电力二极管、金属氧化物半导体场效应晶体管(MOSFET)和绝缘栅双极型晶体管(IGBT)及它们的符号和容量描述如下。本文暂不涉及它们的物理和工作特性等细节问题,有兴趣的朋友可以参考其他资料。
电力二极管
电力二极管是具有两个端子的PN结器件。当阳极电势与阴极电势之差大于器件通态压降时,即器件处于正向偏置时,器件导通并传导电流。器件的通态压降一般为0.7V。当器件反向偏置时,如阳极电势小于阴极电势的情况,器件关断并进入阻态。在关断模式下,流经二极管的电流波形如图1所示,电流先降为零并且继续下降,随后上升回到零值。
反向电流的存在是因为反向偏置导致器件中出现了反向恢复电荷。器件恢复阻断能力的最小时间为;二极管的反向恢复电荷为,即图示存在反向电流流动的区域。二极管自身除正向导通压降外,并不存在正向电压阻断能力。使导通二极管关断的唯一方式是施加反向偏置,如在阳极和阴极两端加负电压。需要注意的是,与其它器件不同,二极管不受低电压信号控制。
反向恢复时间在几微秒到十几微秒之间的二极管被归为低开关频率器件。它们主要应用在开关时间同通态时间相比可以忽略的场合,其中开关时间包括导通时间和关断时间两部分。因此,这类二极管通常作为整流器用以将交流电整流为直流电,这样的二极管被称为电力二极管。电力二极管可以承受上千安培的电流和几千伏的电压,并且它们的开关频率通常限制为市电的工频频率。
对于需要快速开关的应用场合,首选快恢复二极管。这类二极管的反向恢复时间仅需几纳秒,可承受几百安培电流和几百伏电压,但其通态压降为2-3V。快恢复二极管常见于电压超过60-100V的快速开关整流器及逆变器中。而在低于60-100V的低电压开关应用中,可以使用肖特基二极管,其通态压降为0.3V,因此,同电力二极管和快恢复二极管相比,肖特基二极管在电能转换上的效率更高。
MOSFET
该器件是一类只需低电压即可控制开通、关断的场效应晶体管,并具有30kHz到1MHz范围的更高开关频率。器件的容量多设计为100-200V时,可承受100A的电流;在1000V时,可承受10A的电流。这类器件在通态时的行为类似于电阻,因此可用作电流传感器,从而在驱动系统中减少一个分立的电流传感器,比如霍尔效应电流传感器,进而节省了成本并增强了电子封装的紧凑性。MOSFET总是伴随着一个反并联的体二极管,该二极管有时也被称作寄生二极管。体二极管并非超快速开关器件并且具有更高的电压降。由于体二极管的缘故,MOSFET并没有反向电压阻断能力。图2为N沟道MOSFET器件的符号及其在不同栅源电压下,漏电流与漏源电压之间的特性曲线,通常栅源电压值不会超过20V。为了减少开关噪声的影响,在实际情况下,一般倾向于在栅源极间施加一个-5V左右的反向偏置电压,这样,为保证使器件导通,噪声电压必须大于阀值门控电压和负偏置电压之和。在低成本的驱动控制中,没有条件为反向偏置门电路增加一路负逻辑电源,但许多工业驱动器却需要这样的保护电路。
门控电压信号以源极作为参考电位。该信号由微处理器或者数字信号处理器产生。一般来说,处理器不太可能具备直接驱动门极所需的电压和电流容量。因此,在处理器的输出及门极输入之间需要加入电平转换电路,使控制信号在器件导通瞬间具有5-15V的输出电压,同时具有大电流驱动能力(长达几毫秒,根据不同应用有所不同),这也被称为门极驱动放大电路。由于各输入逻辑电平信号由共同的电源供电,而各门极驱动电路连接着不同的MOSFET源极,各源极电平可能处于不同状态,所以,门极驱动放大电路同输入逻辑电平信号之间是相互隔离的。为了产生隔离作用,在低电压(<300V)时,采用单芯片光耦隔离;在小于1000V时,采用带有高频变压器连接的DC-DC变换电路隔离;或者在高压(>1000V)时;采用光纤连接进行隔离。针对不同电压等级的各种隔离方法在实际应用中或有体现。
在门极驱动电路中,通常集成了过流、过压及低压保护电路。通过检测MOSFET的漏源压降可以获知电流,而通过检测变换器电路的直流输入电压可以提供电压保护。这些都可以通过成本便宜的电阻进行检测。典型的门极驱动电路如图3所示。在很多门极驱动电路中,通过在门极信号放大电路前加入与电路,可将电流和电压保护信号整合到门极输入信号中。在这种情况下,需要更加注意保证的是,与电路和放大电路之间信号的延时必须非常小,以使得延时不会影响瞬间保护。目前已有单芯片封装形式的门极驱动电路,这些芯片经常在低电压(<350V)变换器电路场合中使用。对于其它电压等级,门极驱动电路几乎都是针对某种电路特性的特殊应用定制开发的。
图3 栅控驱动电路原理图
绝缘栅双极型晶体管
这是一类三端器件。该器件具有同MOSFET一样理想的门控特性,并具有类似晶体管的反向电压阻断能力和导通特性,其符号如图4。在5V的通态压降下,目前这类器件的容量在电压为3.3kV时,电流可以达到1.2kA;而在6.6kV时为0.6kA。并且在更小的电压时获得更大的电流及更小的导通压降也是可行的。预测在不远的将来,将研制出最大电流(1kA)和电压(15kV)等级的增强型商用器件。该器件的开关频率往往集中在20kHz。但在大功率应用场合,出于减少开关损耗及电磁干扰等方面的考虑,往往降低其开关频率使用。
-THE END-
点击“阅读原文”查看小编为大家准备的电力技术书单!
往期精彩
永磁电动机:你最需要搞明白的机理在这里!
电机与电气控制技术的60个知识点
全面认识变压器(超赞图文详解)
E视界官方微信群现已建立,请添加小编为好友,小编拉您入群!快来加入吧,跟大家一起互相探讨、互相学习,还能第一时间了解公众号的一举一动!