其他
【综述专栏】异常检测:Anomaly Detection综述
在科学研究中,从方法论上来讲,都应先见森林,再见树木。当前,人工智能科技迅猛发展,万木争荣,更应系统梳理脉络。为此,我们特别精选国内外优秀的综述论文,开辟“综述”专栏,敬请关注。
地址:https://www.zhihu.com/people/mu-yi-yang-42-66
01
简介
02
03
异常检测相关工作与方向
1. DAD研究的主要元素
(1) 异常数据集
点集 连续集 团队集
(2) 异常检测模型
无监督学习、AutoEncoder、GAN、矩阵因子分解 半监督学习、强化学习 Hybrid(混种)、特征提取+传统算法 单分类神经网络
(3) 异常检测应用
诈骗检测 网络侵入检测 医学异常检测 传感器网络异常检测 视屏监督 物联网大数据异常检测 日志异常检测 工业危害检测
2. 异常检测论文分类
(1) 数据的连续性
(2) 数据标签的可用性
监督学习Supervised Learning 半监督学习Semi-supervised Learning 无监督学习Unsupervised Learning
(3) 基于训练对象的模型
深度混种模型Deep Hybrid Model(DHM) 单分类神经网络One-Class Neural Networks(OC-NN)
(4) 数据异常类型
点集Point 连续集Contextual 团队集Collective or Group
(5) 异常检测输出类型
异常分数Anomaly Score 标签Lable
(6) 异常检测应用
04
原始数据的连续性Nature of Input Data
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.
05
数据标签的可用性Availability of Labels
1. 监督Supervised DAD
Raghavendra Chalapathy, Ehsan Zare Borzeshi, and Massimo Piccardi. An investigation of recurrent neural architectures for drug name recognition. arXiv preprint arXiv:1609.07585, 2016a. Raghavendra Chalapathy, Ehsan Zare Borzeshi, and Massimo Piccardi. Bidirectional lstm-crf for clinical concept extraction. arXiv preprint arXiv:1611.08373, 2016b.
2. 半监督Semi-supervised DAD
Drausin Wulsin, Justin Blanco, Ram Mani, and Brian Litt. Semi-supervised anomaly detection for eeg waveforms using deep belief nets. In Machine Learning and Applications (ICMLA), 2010 Ninth International Conference on, pages 436–441. IEEE, 2010. Mutahir Nadeem, Ochaun Marshall, Sarbjit Singh, Xing Fang, and Xiaohong Yuan. Semi-supervised deep neural network for network intrusion detection. 2016. Hongchao Song, Zhuqing Jiang, Aidong Men, and Bo Yang. A hybrid semi-supervised anomaly detection model for high-dimensional data. Computational intelligence and neuroscience, 2017.
3. 无监督Unsupervised DAD
Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean Robinson. Deep learning for unsupervised insider threat detection in structured cybersecurity data streams. arXiv preprint arXiv:1710.00811, 2017.
06
基于训练对象的模型
1. 深度变种模型Deep Hybrid Models(DHM)
Jerone TA Andrews, Edward J Morton, and Lewis D Griffin. Detecting anomalous data using auto-encoders. International Journal of Machine Learning and Computing, 6(1):21, 2016a. Tolga Ergen, Ali Hassan Mirza, and Suleyman Serdar Kozat. Unsupervised and semi-supervised anomaly detection with lstm neural networks. arXiv preprint arXiv:1710.09207, 2017.
2. 单分类神经网络One-Class Neural Networks(OC-NN)
Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360, 2018a.
07
数据异常类型
1. 点集Point
2. 连续集Contextual or Conditional
Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. Conditional anomaly detection. IEEE Transactions on Knowledge and Data Engineering, 19(5):631–645, 2007.
3. 团队集Collective or Group
Raghavendra Chalapathy, Edward Toth, and Sanjay Chawla. Group anomaly detection using deep generative models. arXiv preprint arXiv:1804.04876, 2018b. Lo¨ıc Bontemps, James McDermott, Nhien-An Le-Khac, et al. Collective anomaly detection based on long short-term memory recurrent neural networks. In International Conference on Future Data and Security Engineering, pages 141–152. Springer, 2016. Daniel B Araya, Katarina Grolinger, Hany F ElYamany, Miriam AM Capretz, and G Bitsuamlak. Collective contextual anomaly detection framework for smart buildings. In Neural Networks (IJCNN), 2016 International Joint Conference on, pages 511–518. IEEE, 2016. Naifan Zhuang, Tuoerhongjiang Yusufu, Jun Ye, and Kien A Hua. Group activity recognition with differential recurrent convolutional neural networks. In Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, pages 526–531. IEEE, 2017.
08
idea新颖的论文
[1] Liu W, Luo W, Lian D, et al. Future frame prediction for anomaly detection–a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6536-6545.
[2] Gong D, Liu L, Le V, et al. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1705-1714.[3] Park H, Noh J, Ham B. Learning Memory-guided Normality for Anomaly Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 14372-14381.[4] Zhao Y, Deng B, Shen C, et al. Spatio-temporal autoencoder for video anomaly detection[C]//Proceedings of the 25th ACM international conference on Multimedia. 2017: 1933-1941.[5] Ionescu R T, Khan F S, Georgescu M I, et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 7842-7851.[6] Liu W, Luo W, Li Z, et al. Margin Learning Embedded Prediction for Video Anomaly Detection with A Few Anomalies[C]//IJCAI. 2019: 3023-3030.[7] Sultani W, Chen C, Shah M. Real-world anomaly detection in surveillance videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6479-6488.[8] Luo W, Liu W, Gao S. A revisit of sparse coding based anomaly detection in stacked rnn framework[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 341-349.
[1] Liu W, Luo W, Lian D, et al. Future frame prediction for anomaly detection–a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6536-6545.
[2] Gong D, Liu L, Le V, et al. Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1705-1714.[3] Park H, Noh J, Ham B. Learning Memory-guided Normality for Anomaly Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 14372-14381.[4] Zhao Y, Deng B, Shen C, et al. Spatio-temporal autoencoder for video anomaly detection[C]//Proceedings of the 25th ACM international conference on Multimedia. 2017: 1933-1941.[5] Ionescu R T, Khan F S, Georgescu M I, et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 7842-7851.[6] Liu W, Luo W, Li Z, et al. Margin Learning Embedded Prediction for Video Anomaly Detection with A Few Anomalies[C]//IJCAI. 2019: 3023-3030.[7] Sultani W, Chen C, Shah M. Real-world anomaly detection in surveillance videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6479-6488.[8] Luo W, Liu W, Gao S. A revisit of sparse coding based anomaly detection in stacked rnn framework[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 341-349.09
最后总结
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
直播预告
历史文章推荐
【CVPR 2020 Tutorial】如何写好论文和评审(概述)
太牛逼了!一位中国博士把整个CNN都给可视化了,每个细节看的清清楚楚!
Nature发表牛津博士建议:我希望在读博士之初时就能知道的20件事
沈向洋、华刚:读科研论文的三个层次、四个阶段与十个问题
如何看待2021年秋招算法岗灰飞烟灭?
独家解读 | ExprGAN:基于强度可控的表情编辑
独家解读 | 矩阵视角下的BP算法
独家解读 | Capsule Network深度解读
独家解读 | Fisher信息度量下的对抗攻击
论文解读 | 知识图谱最新研究综述
你的毕业论文过了吗?《如何撰写毕业论文?》
卡尔曼滤波系列——经典卡尔曼滤波推导
分享、点赞、在看,给个三连击呗!