什么是泛化(generalization)呢? 这里引用维基百科上关于泛化的定义:A generalization is a form of abstraction whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or set of elements, as well as one or more common characteristics shared by those elements (thus creating a conceptual model). As such, they are the essential basis of all valid deductive inferences (particularly in logic, mathematics and science), where the process of verification is necessary to determine whether a generalization holds true for any given situation.在机器学习任务中,泛化能力被认为是在训练集上训练后,在“未见过”的数据集上的性能。当然,这里常常有一个假设,训练的数据集和测试的数据集是同分布的,即来自于同一个领域(domain)的同一个任务(task)。
领域和任务
这里引用万引迁移学习[1]中关于领域(domain)和任务(task)的定义:领域D={X, P(X)}由两个部分组成:特征空间X和特征空间的边缘分布P(X)。如果两个领域不同,它们的特征空间或边缘概率分布不同。A domain is a pair D={X, P(X)}, which consists of two components: a feature space X and a marginal probability distribution P(X). In general, if two domains are different, then they may have different feature spaces or different marginal probability distributions. 任务T={Y, P(Y|X)}组成:给定一个领域D={X, P(X)}的情况下,一个任务也包含两个部分:标签空间Y和一个目标预测函数f(.)。目标预测函数不能被直接观测,但可以通过训练样本学习得到。从概率论角度来看,目标预测函数f(.)可以表示为P(Y|X)。A task is defined as a pair T={Y, P(Y|X)}. Given a specific domain, D={X, P(X)}, a task consists of two components: a label space Y and an objective predictive function f(.), which is not observed but can be learned from the training data. From a probabilistic viewpoint, f(x) can be written as p(y|x).
文章Dynamics Generalization via Information Bottleneck in Deep Reinforcement Learning[3]认为,深度强化学习模型可以分为两个部分,感知层和决策层。感知层的作用是将环境观测转换为状态表示,而决策层负责从状态表示中学习控制策略。但是感知层比较容易过拟合到当前的训练环境,文章提出了一种信息瓶颈(Information Bottleneck),尽可能地限制从环境观测传递到状态标识的信息,鼓励神经网络去学习一些高维地特征,算法可以有效的泛化到未见过的环境。如下是文章中的主要框架图。 这是文章中主要用到的KL散度公式,和相应的正则和梯度计算方式。 文章中声明信息瓶颈比基线算法和其他正则化技术(如L-2正则和Dropout)拥有更好的泛化能力。
Randomization-Domain Randomization
文章Domain randomization for transferring deep neural networks from simulation to the real world[4]提出了一种样本增强的新方式——域随机化。在一些难以直接采样的环境中,比如机器人的抓取任务,真实环境交互学习代价非常高。文章中提出利用域随机化的方式在仿真环境中进行大量实验可以很好的迁移到正式环境。 域随机化的方向有以下几个方面: 从实验结果的表格中可以看出:
文章Network randomization: A simple technique for generalization in deep reinforcement learning[6]提出了一种十分有效的样本增强方式,可以一次采样,多次训练。通过提高模型泛化能力的同时,又提高了样本的利用率。 这是文章中网络随机化主要用到的公式:
[1] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and data engineering, 2009, 22(10): 1345-1359. [2]Cobbe K, Klimov O, Hesse C, et al. Quantifying generalization in reinforcement learning[C]//International Conference on Machine Learning. PMLR, 2019: 1282-1289. [3]Lu X, Lee K, Abbeel P, et al. Dynamics Generalization via Information Bottleneck in Deep Reinforcement Learning[J]. arXiv preprint arXiv:2008.00614, 2020. [4]Tobin J, Fong R, Ray A, et al. Domain randomization for transferring deep neural networks from simulation to the real world[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 23-30. [5]Mehta B, Diaz M, Golemo F, et al. Active domain randomization[C]//Conference on Robot Learning. PMLR, 2020: 1162-1176. [6]Lee K, Lee K, Shin J, et al. Network randomization: A simple technique for generalization in deep reinforcement learning[J]. arXiv, 2019: arXiv: 1910.05396.