查看原文
其他

【他山之石】Pytorch mixed precision 概述(混合精度)

“他山之石,可以攻玉”,站在巨人的肩膀才能看得更高,走得更远。在科研的道路上,更需借助东风才能更快前行。为此,我们特别搜集整理了一些实用的代码链接,数据集,软件,编程技巧等,开辟“他山之石”专栏,助你乘风破浪,一路奋勇向前,敬请关注。

作者:知乎—superjie13
地址:https://www.zhihu.com/people/superjie13
本文对pytorch中的mixed precision进行测试。主要包括两部分,第一部分为mixed precision使用概述,第二部分为实际测试。参考torch官网 Automatic Mixed Precision

01

Mixed precision使用概述
通常,automatic mixed precision training 需要使用 torch.cuda.amp.autocast 和 torch.cuda.amp.GradScaler 。
1. 1 首先实例化 torch.cuda.amp.autocast(enable=True) 作为上下文管理器或者装饰器,从而使脚本使用混合精度运行。注意:autocast 一般情况下只封装前向传播过程(包括loss的计算),并不包括反向传播(反向传播的数据类型与相应前向传播中的数据类型相同)。
1. 2 使用Gradient scaling 防止在反向传播过程由于中梯度太小(float16无法表示小幅值的变化)从而下溢为0的情况。torch.cuda.amp.GradScaler() 可以自动进行gradient scaling。注意:由于GradScaler()对gradient进行了scale,因此每个参数的gradient应该在optimizer更新参数前unscaled,从而使学习率不受影响。
import torchvisionimport torchimport torch.cuda.ampimport gcimport time
# Timing utilitiesstart_time = None
def start_timer(): global start_time gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.synchronize() # 同步后得出的时间才是实际运行的时间 start_time = time.time()
def end_timer_and_print(local_msg): torch.cuda.synchronize() end_time = time.time() print("\n" + local_msg) print("Total execution time = {:.3f} sec".format(end_time - start_time)) print("Max memory used by tensors = {} bytes".format(torch.cuda.max_memory_allocated()))
num_batches = 50batch_size = 70epochs = 3
# 随机创建训练数据data = [torch.randn(batch_size, 3, 224, 224, device="cuda") for _ in range(num_batches)]targets = [torch.randint(0, 1000, size=(batch_size, ), device='cuda') for _ in range(num_batches)]# 创建一个模型net = torchvision.models.resnext50_32x4d().cuda()# 定义损失函数loss_fn = torch.nn.CrossEntropyLoss().cuda()# 定义优化器opt = torch.optim.SGD(net.parameters(), lr=0.001)
# 是否使用混合精度训练use_amp = True
# Constructs scaler once, at the beginning of the convergence run, using default args.# If your network fails to converge with default GradScaler args, please file an issue.# The same GradScaler instance should be used for the entire convergence run.# If you perform multiple convergence runs in the same script, each run should use# a dedicated fresh GradScaler instance. GradScaler instances are lightweight.scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
start_timer()for epoch in range(epochs): for input, target in zip(data, targets): with torch.cuda.amp.autocast(enabled=use_amp): output = net(input) loss = loss_fn(output, target) # 放大loss Calls backward() on scaled loss to create scaled gradients. scaler.scale(loss).backward()
# scaler.step() first unscales the gradients of the optimizer's assigned params. # If these gradients do not contain infs or NaNs, optimizer.step() is then called, # otherwise, optimizer.step() is skipped. scaler.step(opt)
# Updates the scale for next iteration. scaler.update() opt.zero_grad(set_to_none=True) # set_to_none=True here can modestly improve performanceend_timer_and_print("Mixed precision:")

02

混合精度测试
测试环境:ubuntu18.04, pytorch 1.7.1, python3.7, RTX2080-8G
2.1 use_amp = False
batch size = 40

2.2 use_amp = True
batch size = 40

从实验2.1和2.2中,可以发现在batch size=40的情况下,不使用混合精度时,GPU内存占用为7011MB,运行时间为47.55 s。而使用混合精度时,GPU内存占用为4997MB,运行时间为27.006 s。在当前运行配置中,内存占用节省了约28.73%,运行时间节省了约43.21%。这也就意味着我们可以使用更大的batch size来提升运行效率。
2.3 use_amp = True
batch size = 70

本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。


“他山之石”历史文章


更多他山之石专栏文章,

请点击文章底部“阅读原文”查看



分享、点赞、在看,给个三连击呗!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存