【综述专栏】当可解释人工智能遇上知识图谱
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
01
相比普通的传统知识表示,知识图谱具有专家知识、质量精良等优点 当然知识图谱也可以从不同的数据源中统一结构,具有数据类型多样性的优点。通过节点和关系把所有不同种类的信息(Heterogeneous Information)连接在一起得到一个关系网络,为真实世界的各个场景直观建模。 随着近几年知识图谱技术的进步一个重要变化就是越来越多的研究与落地工作从通用知识图谱转向了领域或行业知识图谱,转向了企业知识图谱。对比通用知识图谱,随着人工智能在细分以及新兴领域上的应用,专业型知识图谱越来越受到重视。 相比于其他结构知识库,知识图谱的构建以及使用都更加接近人类的认知学习行为,因此对于人类阅读会更加友好
02
这条路径得出的一个解释是,“有很多观看该电影的用户,都喜欢The Incredible Journey;而这部电影刚好也是由你喜欢的电影Fantasia的导演Jams Algar指导的;不妨你可以试试。”当然这个解释可以用生成模型生成。
我们甚至还能从其他的高分路径得到这个用户感兴趣的导演James等。
答复:这个问题问的很细节。我也曾经好奇过,但是我发现,作者挑选路径仅仅基于路径的长度来筛选,譬如筛选路径长度少于6跳的。但是我同时也会疑问,解释一定就跟长度有关吗?难道长路径的解释就一定比短路径要差?我发现很多读者也提出不同的想法,例如用随机游走之类的算法,收敛的时候对路径的概率进行排序,最后选择topk之类,这些也我们可以深挖的方向。关于第二个问题,其实我也觉得单单依据用户CTR历史信息,作为可解释性的一种训练,也是不靠谱的。因为用户点击或者进行其他行为例如评论或者收藏之类的,不一定是有意的,有时候就是随心所欲。我认为这里确实可以过滤的,就是过滤掉一些可能是用户随心所欲的行为,例如看点击的时间频率之类的,或者甚至人工打标记来训练一个过滤器之类的。不过我认为作者的初心只是想提出有这样的一种基于路径的方向,后面的例如强化学习的方法,要比种方法强不少,我觉得读者有兴趣可以探究一下。
03
拓展问题:关于box-embeddings部分,为什么就用这样的箱子的结构?有很多数据也不一定是规规矩矩按照超立方体来分布的,用球体是否可以?甚至是一些其他的复杂形状。
04
答复:当然是有其他类型的。例如,混合型的,如涟漪神经网络RippleNet,这种网络是既有基于路径的也有基于嵌入的。有例如,比较火的是图神经网络,譬如自然语言处理里面就有与图神经网络相结合搞可解释性的。大概原理首先将文本进行图表示(例如语法解释树也是一种图结构,这种解释可以用一些语法相关的图谱去完成)
1. Towards a rigorous science of interpretable machine learning F Doshi-Velez, B Kim - arXiv preprint arXiv:1702.08608, 2017 - arxiv.org https://arxiv.org/abs/1702.08608
2. K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013. https://arxiv.org/abs/1312.6034
3“Extracting Decision Trees From Trained Neural Networks”. SIGKDD. July 23-26,2002 https://www.sciencedirect.com/science/article/pii/S0031320398001812
4. On the role of knowledge graphs in explainable AI F Lecue - Semantic Web, 2020 - content.iospress.com https://content.iospress.com/articles/semantic-web/sw190374
5. Explainable reasoning over knowledge graphs for recommendation X Wang, D Wang, C Xu, X He, Y Cao… - Proceedings of the AAAI …, 2019 - ojs.aaai.org https://ojs.aaai.org/index.php/AAAI/article/view/4470
6. Since 2021 Since 2020 Since 2017 Custom range... Sort by relevance Sort by date [PDF] arxiv.org Reinforcement knowledge graph reasoning for explainable recommendation Y Xian, Z Fu, S Muthukrishnan, G De Melo… - Proceedings of the 42nd …, 2019 - dl.acm.org https://dl.acm.org/doi/abs/10.1145/3331184.3331203
7. Query2box: Reasoning over knowledge graphs in vector space using box embeddings H Ren, W Hu, J Leskovec - arXiv preprint arXiv:2002.05969, 2020 - arxiv.org https://arxiv.org/abs/2002.05969
8. hete-cf: social-based collaborative filtering recommendation using heterogeneous relations c luo, w pang, z wang, c lin - 2014 ieee international …, 2014 - ieeexplore.ieee.org https://arxiv.org/pdf/1412.7610.pdf
9. Luciano Serafini and Artur d’Avila Garcez. Logic tensor networks: Deep learning and logical reasoning from data and knowledge. arXiv preprint arXiv:1606.04422, 2016. https://arxiv.org/abs/1606.04422
10. Tim Rocktaschel and Sebastian Riedel. End-to-end differentiable proving. In ¨ NIPS, pages 3788–3800, 2017. https://arxiv.org/pdf/1705.11040
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
“综述专栏”历史文章
十分钟理解Transformer
思考无标注数据的可用极限
Graph Embedding
ICRA 2021自动驾驶相关论文汇总
IJCAI 2021| 基于图学习的推荐系统综述
排序学习(Learning to rank)综述
零样本文本分类探秘
重磅发布 | 图像图形学发展年度报告(中国图象图形学报第6期综述专刊)
域适应(UDA)和半监督(SSL)的恩怨情仇
Meta Learning — Introduction to meta-learning
网络模型加速——轻量化网络
关于GNN的几个疑问的思考
图卷积神经网络(GCN)速览
从零到一:生成对抗网络GAN完全掌握
更多综述专栏文章,
请点击文章底部“阅读原文”查看
分享、点赞、在看,给个三连击呗!