查看原文
其他

【综述专栏】CVPR 2021 自动驾驶相关论文汇总

在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。

来源:知乎—wanghy
地址:https://zhuanlan.zhihu.com/p/382419598

CVPR 2021全部论文已经放出,网址https://openaccess.thecvf.com/CVPR2021?day=all。特总结自动驾驶相关论文(包含自动驾驶workshop),文章虽然不多,但是产生了两篇最佳论文候选,都出自Uber ATG。

打包下载:本公众号后台回复【cvpr2021】下载汇总论文


系统

MP3: A Unified Model to Map, Perceive, Predict and Plan(Finalist)
Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
Learning by Watching


仿真

GeoSim: Realistic Video Simulation via Geometry-Aware Composition for Self-Driving (Finalist) 参考论文作者总结:https://zhuanlan.zhihu.com/p/377570852


场景生成

SceneGen: Learning to Generate Realistic Traffic Scenes
Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation
AdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles


地图

HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps

预测

Shared Cross-Modal Trajectory Prediction for Autonomous Driving
Pedestrian and Ego-vehicle Trajectory Prediction from Monocular Camera
SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory Prediction
Interpretable Social Anchors for Human Trajectory Forecasting in Crowds
Introvert: Human Trajectory Prediction via Conditional 3D Attention
Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction
LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of Dynamic Agents


场景识别

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition


感知

Exploring Intermediate Representation for Monocular Vehicle Pose Estimation
Delving into Localization Errors for Monocular 3D Object Detection
Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and Radar Signals
ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation


导航

Binary TTC: A Temporal Geofence for Autonomous Navigation


运动估计

Self-Supervised Pillar Motion Learning for Autonomous Driving


Workshop

今年CVPR 也举行了自动驾驶workshop http://cvpr2021.wad.vision/,昨天晚上进行,视频网址(貌似现在视频被关掉了):



总结录用文章和比赛结果如下:


文章

RAD: Realtime and Accurate 3D Object Detection on Embedded Systems
Latent Space Regularization for Unsupervised Domain Adaptation in Semantic Segmentation
Learning Depth-Guided Convolutions for Monocular 3D Object Detection
Accurate 3D Object Detection using Energy-Based Models
Semi-synthesis: A fast way to produce effective datasets for stereo matching
Multi-task Learning with Attention for End-to-end Autonomous Driving
MVFuseNet: Improving End-to-End Object Detection and Motion Forecasting through Multi-View Fusion of LiDAR Data
LCCNet: LiDAR and Camera Self-Calibration using Cost Volume Network
Soft Cross Entropy Loss and Bottleneck Tri-Cost Volume For Efficient Stereo Depth Prediction
Occlusion Guided Scene Flow Estimation on 3D Point Clouds
Video Class Agnostic Segmentation Benchmark for Autonomous Driving
Rethinking of Radar’s Role: A Camera-Radar Dataset and Systematic Annotator via Coordinate Alignment


Waymo Open Dataset Challenge

MOTION PREDICTION CHALLENGE:

第一名:DenseTNT Waymo Open Dataset Motion Prediction Challenge 1 st Place Solution
第二名:ReCoAt A Deep Learning Framework with Attention Mechanism for Multi-Modal Motion Prediction

INTERACTION PREDICTION CHALLENGE:

第一名:Multi-Modal Interactive Agent Trajectory Prediction Using Heterogeneous Edge-Enhanced Graph Attention Network
荣誉奖:AIR 2 for Interaction Prediction

REAL-TIME 3D CHALLENGE:

第一名:1 st Place Solutions to the Real-time 3D Detection and the Most Efficient Model of the Waymo Open Dataset Challenges 2021
第二名:CenterPoint++ submission to the Waymo Real-time 3D Detection Challenge
第三名:3rd Place Solution of Waymo Open Dataset Challenge 2021 Real-time 3D Detection Track
荣誉奖:Real-time 3D Object Detection using Feature Map Flow

REAL-TIME 2D CHALLENGE:

第一名:1st Place Solution for Waymo Open Dataset Challenge 2021 Real-time 2D Detection
第二名:2nd Place Solution for Waymo Open Dataset Challenge — Real-time 2D Object Detection
第三名:3rd place waymo real-time 2D object detection: yolov5 self-ensemble.
荣誉奖:Object Detection with Camera-wise Training
荣誉奖:Waymo Open Dataset Real-Time 2D Object Detection Challenge

本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。


“综述专栏”历史文章


更多综述专栏文章,

请点击文章底部“阅读原文”查看



分享、点赞、在看,给个三连击呗!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存