查看原文
其他

【强基固本】Transformer总结-2022版



“强基固本,行稳致远”,科学研究离不开理论基础,人工智能学科更是需要数学、物理、神经科学等基础学科提供有力支撑,为了紧扣时代脉搏,我们推出“强基固本”专栏,讲解AI领域的基础知识,为你的科研学习提供助力,夯实理论基础,提升原始创新能力,敬请关注。

来源:炼丹笔记

很多人的“记忆”并没那么好,特别是对名字.这些年各种各样的transformer涌现出来,各有各的优势,但是他们的名字却不能直白的看出该版本的transformer到底做了什么.这篇的目的就是把所有流行的transformer进行清晰简单的分类,以便大家对transformer家族快速梳理


01

简介

Transformer是什么就不用多说了,2017年开始至今引用量将近4w的论文<Attention is All you Need>提出了一个encoder-decoder的模型取代了历年一直用的LSTM或者其他RNN,正如标题所述该论文最重要的就是Attention结构了.Transformer最基础的结构如下所示:

顺便温习一下最"核心"的multi-headed attention结构,该结构"匹配"query和key-value对,并且输出value的权重和,value的权重来自于query和key的attention值.Transformer结构使用了多头机制,并行计算特定的attention值,计算方式采用的是Scaled Dot-Product Attentio,如下图所示:

总结transformer主要由以下几个部分组成:

预训练架构: Encoder-Decoder

预训练任务: 

  • Language Modeling(LM) 预测下个token

  • Masked Language Modeling(MLM) 完形填空

  • Permuted Language Modeling(PLM) 对句子做排列

  • Denoising Autoencoder(DAE): 句子中做随机采样,或者随机删除一些token,又或是打乱句子顺序,目标是恢复之前的输入

  • Contrastive Learning(CTL): 各种对比学习方法

应用:问答、情感分析、实体识别等.


02

Catalog table

看不清打开该路径:

https://docs.google.com/spreadsheets/d/1ltyrAB6BL29cOv2fSpNQnnq2vbX8UrHl47d7FkIf6t4/edit#gid=0


03

Transfromer族谱及时间线

参考文献

1.https://xamat.medium.com/transformers-models-an-introduction-and-catalogue-2022-edition-2d1e9039f376

本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。

“强基固本”历史文章


更多强基固本专栏文章,

请点击文章底部“阅读原文”查看



分享、点赞、在看,给个三连击呗!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存