【综述专栏】2022图神经网络5篇最新的研究综述:双曲/图分类/联邦/等变/异质性
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
地址:https://zhuanlan.zhihu.com/p/482962809
近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图神经网络已经成为各大深度学习顶会的研究热点。GNN处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语言处理和图上的组合优化问题方面都取得了新的突破。
下面简单介绍一下2022年最新的研究综述,这些也是最近的研究趋势,希望对大家的研究有所帮助。
第一篇是双曲图神经网络
第二篇是图分类
第三篇是联邦图学习
第四篇是等变图神经网络
第五篇是图的异质性
01
题目:Hyperbolic Graph Neural Networks: A Review of Methods and Applications
作者:Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, Irwin King
Arxiv : https://arxiv.org/abs/2202.13852
GitHub : https://github.com/marlin-codes/awesome-hyperbolic-graph-neural-network-papers
目前有非常多优秀的工作是研究图神经网络的,而神经网络也成为了ICML,NeurIPS,ICLR中的热门话题。在这些顶会研究中,也发现了另外一些有意思的工作,也就是基于双曲空间的图神经网络。简单来说,是将图神经网络建立在双曲空间,而不是我们常见的欧式空间中。那么双曲空间是什么呢?为什么要建立在双曲空间中?建立在双曲空间中的使用图神经网络有哪些优势呢?它是如何建立的呢?双曲图神经网络有哪些应用呢?以及双曲图神经网络研究目前的困难和一些机会是什么呢?这篇研究综述主要是讲解这些内容。
02
题目 :图分类研究综述(已发表-软件学报)
作者 :王兆慧,沈华伟, 曹婍, 程学旗
链接 :http://www.jos.org.cn/html/2022/1/6323.htm
图数据广泛存在于现实世界中, 可以自然地表示复合对象及其元素之间的复杂关联. 对图数据的分类是一 个非常重要且极具挑战的问题, 在生物/化学信息学等领域有许多关键应用, 如分子属性判断, 新药发现等. 但目前 尚缺乏对于图分类研究的完整综述.
本文首先给出「图分类」问题的定义和该领域的挑战; 然后梳理分析了两类图分类方 法—基于图相似度计算的图分类方法和基于图神经网络的图分类方法; 接着给出了图分类方法的评价指标、常用 数据集和实验结果对比; 最后介绍了图分类常见的实际应用场景, 展望了图分类领域的未来研究方向并对全文进行总结.
03
题目 :Federated Graph Neural Networks: Overview, Techniques and Challenges
作者 :Rui Liu, Han Yu
链接 :https://arxiv.org/abs/2202.07256
图神经网络在实际应用中具有强大的数据处理能力,因此受到了广泛的关注。然而,「随着社会越来越关注数据隐私」,GNN面临着适应这种新常态的需要。这导致了近年来联邦图神经网络(Federated Graph Neural Network,简称FedGNNs)研究的迅速发展。尽管这一跨学科领域前景广阔,但对感兴趣的研究人员来说具有很高的挑战性。在这个话题上缺乏有见地的调研只会加剧这个问题。
在这篇论文中,作者通过提供这一新兴领域的全面调研来弥补这一差距。本文提出了关于FedGNN文献的一个「独特的三层分类法」(如图1所示),
以提供一个清晰的视角来了解GNN在联邦学习(FL)环境中是如何工作的。它通过分析图数据如何在FL设置中表现自己,如何在不同的FL系统架构下进行GNN训练,如何在不同的数据竖井中进行图数据重叠程度,以及如何在不同的FL设置下进行GNN聚合,将现有的工作纳入视野。通过对现有工作的优势和局限性的讨论,作者展望了未来的研究方向,可以帮助构建更健壮、动态、高效和可解释的联邦图神经网络。
04
题目 :Geometrically Equivariant Graph Neural Networks: A Survey.
作者 :Jiaqi Han, Yu Rong, Tingyang Xu, Wenbing Huang
Link :https://arxiv.org/abs/2202.07230
许多科学问题需要以几何图的形式处理数据。与一般图数据不同,「几何图表现出平移、旋转和/或反射的对称性」。研究人员利用这种归纳偏差并开发了几何等变图神经网络 (GNN) 来更好地表征几何图的几何和拓扑。尽管取得了丰硕的成果,但它仍然缺乏描述等变 GNN 如何进展的调查,这反过来又阻碍了等变 GNN 的进一步发展。为此,基于必要但简明的数学预备知识,作者分析现有方法并将其分为三组,以了解如何表示 GNN 中的消息传递和聚合。还总结了基准以及相关数据集,以方便后期研究方法开发和实验评估。还提供了对未来潜在方向的展望。
05
题目 :Graph Neural Networks for Graphs with Heterophily: A Survey
作者 :Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, Philip S. Yu
链接 :https://arxiv.org/abs/2202.07082
近年来,图神经网络(GNN)得到了迅速的发展,为无数的图分析任务和应用提供了便利。一般来说,大多数GNN依赖于同质性假设,即属于同一类的节点更有可能被连接。然而,作为现实世界众多场景中普遍存在的图属性,异质性(即具有不同标签的节点往往被链接)严重限制了定制同质GNN的性能。因此,GNN for Heterophilic Graphs在这个社区中得到了越来越多的关注。本文首次对异质图的gnn作了一个全面的综述。具体来说,作者提出了一个系统的分类法,该分类法本质上支配着现有的亲异GNN模型,并对其进行了一般性的总结和详细的分析。此外,作者总结了主流的异亲图基准,以促进稳健和公平的评估。最后,本文指出了在异亲图研究和应用方面的潜在发展方向。
本文目的在于学术交流,并不代表本公众号赞同其观点或对其内容真实性负责,版权归原作者所有,如有侵权请告知删除。
“综述专栏”历史文章
深度神经网络 FPGA 设计进展、实现与展望
视觉-语言(VL)智能:任务、表征学习和大型模型
基于深度学习的SLAM综述:迈向空间机器智能时代
Michael Bronstein 最新几何深度学习综述:超越 WL 和原始消息传递的 GNN
从识别到推理——规则学习(Rule Learning)综述
公平机器学习:概念、分析与设计
知识蒸馏 | 最新2022研究综述
MICCAI-2021医学图像分割领域69篇文章速读概览(文末附总结)
除了NLP,Transformer还可以用来做什么?
最新视觉-语言预训练综述
图注意力模型综述 Attention Models in Graphs: A Survey
TPAMI 2022|华为诺亚最新视觉Transformer综述
自动驾驶多模态传感器融合的综述
COLING2020 NLP中的持续学习综述
强化学习可解释性
更多综述专栏文章,
请点击文章底部“阅读原文”查看
分享、点赞、在看,给个三连击呗!