ES Pipeline Aggregation(管道聚合)
微信公众号:[中间件兴趣圈]
关于作者:《RocketMQ技术内幕》作者;
管道聚合处理来自其他聚合而不是文档集的输出,将信息添加到输出树中。
注:关于脚本聚合目前在本文中暂时不会涉及。
主要有如下两种管道聚合方式:
parent
sibling
下面一一介绍ES定义的管道聚合。
Avg Bucket 聚合
同级管道聚合,它计算同级聚合中指定度量的平均值。同级聚合必须是多桶聚合,针对的是度量聚合(metric Aggregation)。
示例如下:
1{
2 "avg_bucket": {
3 "buckets_path": "the_sum" // @1
4 }
5}
buckets_path:指定聚合的名称,支持多级嵌套聚合。
其他参数:gap_policy
当管道聚合遇到不存在的值,有点类似于term等聚合的(missing)时所采取的策略,可选择值为:skip、insert_zeros。skip:此选项将丢失的数据视为bucket不存在。它将跳过桶并使用下一个可用值继续计算。
insert_zeros:默认使用0代替。
format
用于格式化聚合桶的输出(key)。
示例如下:
1POST /_search
2{
3 "size": 0,
4 "aggs": {
5 "sales_per_month": { // @1
6 "date_histogram": {
7 "field": "date",
8 "interval": "month"
9 },
10 "aggs": { // @2
11 "sales": {
12 "sum": {
13 "field": "price"
14 }
15 }
16 }
17 },
18 "avg_monthly_sales": { // @3
19 "avg_bucket": {
20 "buckets_path": "sales_per_month>sales"
21 }
22 }
23 }
24}
代码@1:首先定义第一级聚合(按月)直方图聚合。
代码@2:定义第二级聚合,在按月聚合的基础上,对每个月的文档求sum。
代码@3:对上面的聚合求平均值。
其返回结果如下:
1{
2 ... // 省略
3 "aggregations": {
4 "sales_per_month": {
5 "buckets": [
6 {
7 "key_as_string": "2015/01/01 00:00:00",
8 "key": 1420070400000,
9 "doc_count": 3,
10 "sales": {
11 "value": 550.0
12 }
13 },
14 {
15 "key_as_string": "2015/02/01 00:00:00",
16 "key": 1422748800000,
17 "doc_count": 2,
18 "sales": {
19 "value": 60.0
20 }
21 }
22 ]
23 },
24 "avg_monthly_sales": { // 这是对二级聚合的结果再进行一次求平均值聚合。
25 "value": 328.33333333333333
26 }
27 }
28}
对应的JAVA示例如下:
1public static void test_pipeline_avg_buncket_aggregation() {
2 RestHighLevelClient client = EsClient.getClient();
3 try {
4 SearchRequest searchRequest = new SearchRequest();
5 searchRequest.indices("aggregations_index02");
6 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
7 AggregationBuilder aggregationBuild = AggregationBuilders.terms("seller_agg")
8 .field("sellerId")
9 .subAggregation(AggregationBuilders.sum("seller_num_agg")
10 .field("num")
11 )
12 ;
13 sourceBuilder.aggregation(aggregationBuild);
14
15 // 添加 avg bucket pipeline
16 sourceBuilder.aggregation(new AvgBucketPipelineAggregationBuilder("seller_num_agg_av", "seller_agg>seller_num_agg"));
17 sourceBuilder.size(0);
18
19 searchRequest.source(sourceBuilder);
20 SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT);
21 System.out.println(result);
22 } catch (Throwable e) {
23 e.printStackTrace();
24 } finally {
25 EsClient.close(client);
26 }
27 }
Percentiles Bucket 聚合
同级管道聚合,百分位管道聚合。其JAVA示例如下:
1public static void test_Percentiles_buncket_aggregation() {
2 RestHighLevelClient client = EsClient.getClient();
3 try {
4 SearchRequest searchRequest = new SearchRequest();
5 searchRequest.indices("aggregations_index02");
6 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
7 AggregationBuilder aggregationBuild = AggregationBuilders.terms("seller_agg")
8 .field("sellerId")
9 .subAggregation(AggregationBuilders.sum("seller_num_agg")
10 .field("num")
11 )
12 ;
13 sourceBuilder.aggregation(aggregationBuild);
14
15 // 添加 avg bucket pipeline
16 sourceBuilder.aggregation(new PercentilesBucketPipelineAggregationBuilder("seller_num_agg_av", "seller_agg>seller_num_agg"));
17 sourceBuilder.size(0);
18
19 searchRequest.source(sourceBuilder);
20 SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT);
21 System.out.println(result);
22 } catch (Throwable e) {
23 e.printStackTrace();
24 } finally {
25 EsClient.close(client);
26 }
27 }
其返回值如下:
1{
2 ... // 省略其他属性
3 "aggregations":{
4 "lterms#seller_agg":{
5 "doc_count_error_upper_bound":0,
6 "sum_other_doc_count":12,
7 "buckets":[
8 {
9 "key":45,
10 "doc_count":567,
11 "sum#seller_num_agg":{
12 "value":911
13 }
14 },
15 {
16 "key":31,
17 "doc_count":324,
18 "sum#seller_num_agg":{
19 "value":353
20 }
21 } // 省略其他桶的显示
22 ]
23 },
24 "percentiles_bucket#seller_num_agg_av":{
25 "values":{
26 "1.0":5,
27 "5.0":5,
28 "25.0":10,
29 "50.0":20,
30 "75.0":290,
31 "95.0":911,
32 "99.0":911
33 }
34 }
35 }
36}
Cumulative Sum 聚合
累积管道聚合,就是就是依次将每个管道的sum聚合进行累加。
其语法(restfull)如下:
1{
2 "cumulative_sum": {
3 "buckets_path": "the_sum"
4 }
5}
支持的参数说明:
buckets_path
桶聚合名称,作为管道聚合的输入信息。format
格式化key。
使用示例如下:
1POST /sales/_search
2{
3 "size": 0,
4 "aggs" : {
5 "sales_per_month" : {
6 "date_histogram" : {
7 "field" : "date",
8 "interval" : "month"
9 },
10 "aggs": {
11 "sales": {
12 "sum": {
13 "field": "price"
14 }
15 },
16 "cumulative_sales": {
17 "cumulative_sum": {
18 "buckets_path": "sales"
19 }
20 }
21 }
22 }
23 }
24}
其返回结果如下:
1{
2 "took": 11,
3 "timed_out": false,
4 "_shards": ...,
5 "hits": ...,
6 "aggregations": {
7 "sales_per_month": {
8 "buckets": [
9 {
10 "key_as_string": "2015/01/01 00:00:00",
11 "key": 1420070400000,
12 "doc_count": 3,
13 "sales": {
14 "value": 550.0
15 },
16 "cumulative_sales": {
17 "value": 550.0
18 }
19 },
20 {
21 "key_as_string": "2015/02/01 00:00:00",
22 "key": 1422748800000,
23 "doc_count": 2,
24 "sales": {
25 "value": 60.0
26 },
27 "cumulative_sales": {
28 "value": 610.0
29 }
30 },
31 {
32 "key_as_string": "2015/03/01 00:00:00",
33 "key": 1425168000000,
34 "doc_count": 2,
35 "sales": {
36 "value": 375.0
37 },
38 "cumulative_sales": {
39 "value": 985.0
40 }
41 }
42 ]
43 }
44 }
45}
从结果可知,cumulative_sales的值等于上一个cumulative_sales + 当前桶的sum聚合。
对应的JAVA示例如下:
1{
2 "aggregations":{
3 "date_histogram#createTime_histogram":{
4 "buckets":{
5 "2015-12-01 00:00:00":{
6 "key_as_string":"2015-12-01 00:00:00",
7 "key":1448928000000,
8 "doc_count":6,
9 "sum#seller_num_agg":{
10 "value":16
11 },
12 "simple_value#Cumulative_Seller_num_agg":{
13 "value":16
14 }
15 },
16 "2016-01-01 00:00:00":{
17 "key_as_string":"2016-03-01 00:00:00",
18 "key":1456790400000,
19 "doc_count":10,
20 "sum#seller_num_agg":{
21 "value":11
22 },
23 "simple_value#Cumulative_Seller_num_agg":{
24 "value":31
25 }
26 }
27 // ... 忽略
28 }
29 }
30 }
31}
Bucket Sort 聚合
一种父管道聚合,它对其父多桶聚合的桶进行排序。并可以指定多个排序字段。每个bucket可以根据它的_key、_count或子聚合进行排序。此外,可以设置from和size的参数,以便截断结果桶。
使用语法如下:
1{
2 "bucket_sort": {
3 "sort": [
4 {"sort_field_1": {"order": "asc"}},
5 {"sort_field_2": {"order": "desc"}},
6 "sort_field_3"
7 ],
8 "from": 1,
9 "size": 3
10 }
11}
支持的参数说明如下:
sort
定义排序结构。from
用与对父聚合的桶进行截取,该值之前的所有桶将忽略,也就是不参与排序,默认为0。size
返回的桶数。默认为父聚合的所有桶。gap_policy
当管道聚合遇到不存在的值,有点类似于term等聚合的(missing)时所采取的策略,可选择值为:skip、insert_zeros。skip:此选项将丢失的数据视为bucket不存在。它将跳过桶并使用下一个可用值继续计算。
insert_zeros:默认使用0代替。
官方示例如下:
1POST /sales/_search
2{
3 "size": 0,
4 "aggs" : {
5 "sales_per_month" : {
6 "date_histogram" : {
7 "field" : "date",
8 "interval" : "month"
9 },
10 "aggs": {
11 "total_sales": {
12 "sum": {
13 "field": "price"
14 }
15 },
16 "sales_bucket_sort": {
17 "bucket_sort": {
18 "sort": [
19 {"total_sales": {"order": "desc"}}
20 ],
21 "size": 3
22 }
23 }
24 }
25 }
26 }
27}
对应的JAVA示例如下:
1public static void test_bucket_sort_Aggregation() {
2 RestHighLevelClient client = EsClient.getClient();
3 try {
4
5 //构建日期直方图聚合 时间间隔,示例中按月统计
6 DateHistogramInterval interval = new DateHistogramInterval("1M");
7 SearchRequest searchRequest = new SearchRequest();
8 searchRequest.indices("aggregations_index02");
9 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
10 AggregationBuilder aggregationBuild = AggregationBuilders.dateHistogram("createTime_histogram")
11 .field("createTime")
12 .dateHistogramInterval(interval)
13 .keyed(true)
14 .subAggregation(AggregationBuilders.sum("seller_num_agg")
15 .field("num")
16 )
17 .subAggregation(new BucketSortPipelineAggregationBuilder("seller_num_agg_sort", Arrays.asList(
18 new FieldSortBuilder("seller_num_agg").order(SortOrder.ASC)))
19 .from(0)
20 .size(3))
21 // BucketSortPipelineAggregationBuilder(String name, List<FieldSortBuilder> sorts)
22 .subAggregation(new CumulativeSumPipelineAggregationBuilder("Cumulative_Seller_num_agg", "seller_num_agg"))
23 // .format("yyyy-MM-dd") // 对key的格式化
24 ;
25 sourceBuilder.aggregation(aggregationBuild);
26 sourceBuilder.size(0);
27 sourceBuilder.query(
28 QueryBuilders.termQuery("sellerId", 24)
29 );
30 searchRequest.source(sourceBuilder);
31 SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT);
32 System.out.println(result);
33 } catch (Throwable e) {
34 e.printStackTrace();
35 } finally {
36 EsClient.close(client);
37 }
38 }
返回值:
1{
2 "aggregations":{
3 "date_histogram#createTime_histogram":{
4 "buckets":{
5 "2016-04-01 00:00:00":{
6 "key_as_string":"2016-04-01 00:00:00",
7 "key":1459468800000,
8 "doc_count":2,
9 "sum#seller_num_agg":{
10 "value":2
11 },
12 "simple_value#Cumulative_Seller_num_agg":{
13 "value":2
14 }
15 },
16 "2017-05-01 00:00:00":{
17 "key_as_string":"2017-05-01 00:00:00",
18 "key":1493596800000,
19 "doc_count":3,
20 "sum#seller_num_agg":{
21 "value":3
22 },
23 "simple_value#Cumulative_Seller_num_agg":{
24 "value":5
25 }
26 },
27 "2017-02-01 00:00:00":{
28 "key_as_string":"2017-02-01 00:00:00",
29 "key":1485907200000,
30 "doc_count":4,
31 "sum#seller_num_agg":{
32 "value":4
33 },
34 "simple_value#Cumulative_Seller_num_agg":{
35 "value":9
36 }
37 }
38 }
39 }
40 }
Max Bucket 聚合
与 avg类似。
Min Bucket 聚合
与 avg类似。
Sum Bucket 聚合
与 avg类似。
Stats Bucket 聚合
与 avg类似。
更多文章请关注公众号:
一波广告来袭:作者新书《RocketMQ技术内幕》出版上市啦。
《RocketMQ技术内幕》已出版上市,目前可在主流购物平台(京东、天猫等)购买,本书从源码角度深度分析了RocketMQ NameServer、消息发送、消息存储、消息消费、消息过滤、主从同步HA、事务消息;在实战篇重点介绍了RocketMQ运维管理界面与当前支持的39个运维命令;并在附录部分罗列了RocketMQ几乎所有的配置参数。本书得到了RocketMQ创始人、阿里巴巴Messaging开源技术负责人、Linux OpenMessaging 主席的高度认可并作序推荐。目前是国内第一本成体系剖析RocketMQ的书籍。