MLK | 机器学习论文搜索利器推荐
🎥 前情回顾
MLK | 一文理清 深度学习前馈神经网络
MLK | 机器学习常见算法优缺点了解一下
MLK | 如何解决机器学习树集成模型的解释性问题
(1) arXiv
(2) NIPS
(3) paperswithcode
SAMshare 机器学习相关论文推荐(排名不分先后):
[1] XGBoost: A Scalable Tree Boosting System
Download:https://arxiv.org/pdf/1603.02754v3.pdf
[2] CatBoost: gradient boosting with categorical features support
Download:https://arxiv.org/pdf/1810.11363v1.pdf
[3] Tune: A Research Platform for Distributed Model Selection and Training
Download:https://arxiv.org/pdf/1807.05118v1.pdf
[4] Practical Bayesian Optimization of Machine Learning Algorithms
Download:https://arxiv.org/pdf/1206.2944v2.pdf
[5] Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms
Download:https://pdfs.semanticscholar.org/d4f4/9717c9adb46137f49606ebbdf17e3598b5a5.pdf
[6] TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Download:https://arxiv.org/pdf/1603.04467v2.pdf
[7] Semi-Supervised Sequence Modeling with Cross-View Training
Download:https://arxiv.org/pdf/1809.08370v1.pdf
[8] Automatic Differentiation in PyTorch
Download:https://openreview.net/pdf?id=BJJsrmfCZ
[9] Caffe: Convolutional Architecture for Fast Feature Embedding
Download:https://arxiv.org/pdf/1408.5093v1.pdf
[10] Bag of Tricks for Efficient Text Classification
Download:https://arxiv.org/pdf/1607.01759v3.pdf
SAMshare paper