伽罗瓦理论之美(三)
三、“神来之笔”——域的自同构、伽罗瓦群与伽罗瓦对应
【伽罗瓦的故事】
伽罗瓦的葬礼因政治原因而变得混乱,政府认为伽罗瓦的葬礼将会造成一次政治集会,为了维护稳定,政府在葬礼之前的晚上逮捕了30名伽罗瓦的同志。尽管如此,还是有两千多个共和主义者参加了葬礼,从而与政府人员之间爆发了一场混战。这之后,不断有人怀疑伽罗瓦与斯特凡妮的风流韵事是一个阴谋,用来害死伽罗瓦的阴谋。直到今天,伽罗瓦到底是死于愚蠢的爱情还是政治阴谋仍然没有定论。但无论是哪种原因,这位研究数学才5年但是却被认为是最伟大的数学家之一的天才,在21岁的时候就离开了人世。这对数学界来说是一个重大的损失,只不过当时的人们还完全认识不到。
伽罗瓦虽然在决斗的前夜把他的数学思想写了出来,但是这种潦草的内容、跳跃的思维并不是立刻就被数学界所理解的。虽然伽罗瓦的兄弟和朋友把他写下的数学思想重新整理了一遍,并分送给了高斯、雅可比等人,但是伽罗瓦的伟大研究成果仍然没有得到理解和承认。直到14年后,法国数学家约瑟夫·刘维尔(JosephLiouville)重新整理并发表了伽罗瓦的著作,才使得伽罗瓦理论逐渐被世人所理解。
刘维尔本人也是一位著名的数学家,一生从事数学、力学和天文学的研究,涉足广泛,成果丰富,尤其对双周期椭圆函数、微分方程边值问题和数论中的超越数问题有深入研究。他是第一个证实超越数存在的人。
即使是这样一位著名数学家,仍然从1843年到1846年用了3年的时间来彻底研究伽罗瓦的理论,终于在1846年比较全面的理解了伽罗瓦的成就并发表出来。刘维尔虽然在数学领域有不小的贡献,但很可能他整理、理解并发表伽罗瓦理论是他在数学领域最大的贡献。代数学能够取得今天的成就,刘维尔功劳不小。
刘维尔在反思为什么伽罗瓦的理论在很长一段时间内不能得到理解的原因时,写下了这样一段话:
过分地追求简洁是导致这一缺憾的原因。人们在处理像纯粹代数这样抽象和神秘的事物时,应该首先尽力避免这样做。事实上,当你试图引导读者远离习以为常的思路进入较为困惑的领域时,清晰性是绝对必需的,就像笛卡尔说过的那样:“在讨论超前的问题时务必空前地清晰。”伽罗瓦太不把这条箴言放在心上,……
伽罗瓦再也回不来了!我们不要再过分地作无用的批评,让我们把缺憾抛开,找一找有价值的东西,……
我的热心得到了好报。在填补了一些细小的缺陷后,我看出了伽罗瓦用来证明这个美妙的定理的方法是完全正确的,在那个瞬间,我体验到一种强烈的愉悦 。
真心希望大家了解了伽罗瓦理论之后,能够像刘维尔一样有一种“强烈的愉悦感”。伽罗瓦的故事讲完了,伽罗瓦那天才的思想还需要继续。
【伽罗瓦理论】
从前面的介绍我们知道,根式可解需要找到一个根式塔,根式塔是一个域列。只知道这些,我们还是解决不了方程是否能够根式求解的问题,因为我们仍然不知道怎样判断是否存在这种根式塔?
伽罗瓦在思考这个问题的时候,发现或者说找到了一种对应关系——伽罗瓦对应。应该讲,这种对应关系是人类思维领域的“神来之笔”。我无法想象伽罗瓦到底是通过怎样的思考发现了这种对应关系,对我自己来说,能够较快理解伽罗瓦对应就已经谢天谢地了。
伽罗瓦对应的发现应该是从域的自同构映射开始的。
域的自同构映射:前面我们介绍了域的同构,知道了两个域同构意味着两个域之间存在着满足同构关系的映射。显然一个域一定是和自己同构的,我们把某个域E到自身的同构映射叫做自同构映射。事实上,这种自同构映射未必只有一个,我们把全部自同构映射组成的集合记为Aut(E)。
现在开始,我们的思维要在理解群、域的基础上再上一个台阶,开始思考域的自同构映射组成的集合了。记住,Aut(E)中的元素是E→E集合间的映射。
下面再做一个稍复杂点的思维体操,定义Aut(E)上两个元素σ1和σ2之间的“乘法”为σ1*σ2(a)=σ1(σ2(a)),证明Aut(E)在这个“乘法”下构成群。
<1> 构成群首先要满足封闭性,也就是对于σ1∈Aut(E)和σ2∈Aut(E),要证明σ1*σ2∈Aut(E)。证明如下:
请记住,Aut(E)中的σ都是自同构映射,必然满足σ(a+b)=σ(a)+σ(b),σ(a*b)=σ(a)*σ(b)。由此,我们可以得到
σ1*σ2(a+b)=σ1(σ2(a+b))=σ1(σ2(a)+σ2(b))=σ1(σ2(a))+σ1(σ2(b))=σ1*σ2(a)+σ1*σ2(b)
σ1*σ2(a*b)=σ1(σ2(a*b))=σ1(σ2(a)*σ2(b))=σ1(σ2(a))*σ1(σ2(b))=σ1*σ2(a)*σ1*σ2(b)
也即σ1*σ2也满足自同构映射的条件,于是σ1*σ2∈Aut(E)。封闭性得到了满足。
<2> 结合律:
(σ1*σ2)*σ3(a)=(σ1*σ2)(σ3(a))=(σ1(σ2(σ3(a)))=σ1*(σ2*σ3)(a)
也就是(σ1*σ2)*σ3=σ1*(σ2*σ3),满足结合律。
<3> 单位元:显然对于E→E上的恒等映射σe,满足σe(a)=a,∀a∈E,容易验证σe即为Aut(E)的单位元。
<4> 逆元:∀σ∈Aut(E),a∈E且a≠0,有
σ(0)=σ(a-a)=σ(a)-σ(a)=0;
σ(a)=σ(1*a)=σ(1)*σ(a)⇒σ(1)=1;
σ(1)=σ(a*a-1)=σ(a)*σ(a-1)=1⇒σ(a)≠0;即a≠0时σ(a)≠0。
于是得到,a≠b时,σ(a-b)=σ(a)-σ(b)≠0⇒σ(a)≠σ(b)。这说明σ是单射,单射必有逆映射,令其逆映射为σ-1,则必有σ*σ-1(a)=σ(σ-1(a))=a⇒σ*σ-1=σe,确定逆元必然存在。
综上,Aut(E)在上述“乘法”定义下构成群。
对群、域不熟悉的人来说,也许这个思维体操稍微有些“绕”,但是对于熟悉的人来说,这个关系是一眼就可以看出来的。我想,如果一个不熟悉的人把上述并不复杂的推导看明白后,也会感觉到愉悦的。
当然,我相信对于伽罗瓦来说,上述结论是瞬间就想到了的。不仅如此,伽罗瓦还进一步找到了群Aut(E)的一类子群——我们今天称之为伽罗瓦群。
伽罗瓦群:E/F是扩域,且E是系数在F内的某个多项式方程的根域(根域参见前面的说明,以后会将这种根域叫做F的正规扩域),E上全部自同构映射的集合Aut(E)中使F中元素不变的那些映射形成的子集构成Aut(E)的一个子群,称为E在F上的伽罗瓦群,记为G(E/F)。
概念越来越复杂了,解释一下,就是Aut(E)中的自同构映射,有一部分是在F上的恒等映射,也就是说F中的元素在这些映射的作用下是不变的,这类映射的全体组成的集合也构成一个群,是Aut(E)的子群,叫做E在F上的伽罗瓦群。
有人会问,为什么要搞出个伽罗瓦群的概念呢?下面就是见证奇迹的时刻了:
设f(x)∈F[x](意思是f(x)的系数都在F内),则对于任意σ∈G(E/F),必然有σ(f(x))=f(x),这是因为σ作用在F上是恒等映射;同时,设方程f(x)=0有n个根,分别是a1、a2、…、an,那么f(x)=(x-a1)(x-a2)…(x-an),于是σ(f(x))=(x-σ(a1))(x-σ(a2))…(x-σ(an))=f(x)= (x-a1)(x-a2)…(x-an)。这说明σ(a1)、σ(a2)、…、σ(an)只是a1、a2、…、an的一组置换(意思是,还是这n个数,只是位置发生了变化,如σ(a1)= a2、σ(a2)= a1之类的变换)!
看到了么,伽罗瓦群中的每个映射都对应着方程根的一组置换!要知道,从500年前的费尔洛解出了一般一元三次方程,到400年前的塔尔塔利亚、卡丹、费拉里解出一元四次方程,一直到200年前的拉格朗日创造出了方程的预解式,高斯得到了高斯定理,都是在大量的计算推导中,模模糊糊的察觉到方程的解与根的置换似乎有关系。直到伽罗瓦横空出世,清晰的告诉世人,一元高次方程是否可以根式求解的奥秘,就藏在这些根的置换当中。
当然,只知道宝藏的位置还不够,还需要有打开宝藏的钥匙。天才的伽罗瓦找到了这把钥匙,我把它称为“神来之笔”——伽罗瓦对应。
记得讨论根式可解的时候,我们说需要找到一个根式塔,根式塔是一个域列。假设存在一个域列F=F1⊆F2⊆F3⊆…⊆Fr+1=E(注意,这个域列不要求一定是根式塔),且E/F是正规扩域(参见上面描述),则可以证明任意E/Fi,i=1, …,r,也是正规扩域。于是存在一组伽罗瓦群G(E/Fi),这组伽罗瓦群都是G(E/F)的子群,而且可以证明每个G(E/F)的子群一定对应着一个E的子域,这种对应是一一对应,这个神奇的对应被称做伽罗瓦对应。
通过伽罗瓦对应,我们把对复杂的域列问题的研究转换到了对伽罗瓦群的子群列的研究上,这就是打开方程根式可解的金钥匙。
伽罗瓦那不到20岁的头脑中,可能就已经想通了这些问题。当我想到这一点的时候,心中对伽罗瓦的钦佩感无以复加。就像有人评论,欧拉作为数学史上最伟大的数学家之一,他对数学贡献的丰富程度可能远超伽罗瓦,但是如果考虑到欧拉专心研究数学60年,而伽罗瓦仅仅是残缺不全的5年,那么从天赋上讲,大数学家欧拉完败于伽罗瓦。
END
往期精彩回顾
e,一个常数的传奇
世界上最棒的十种思维
爬了知乎“神回复”,笑得根本停不下来
让我知道你在看