目标检测 | 基于统计自适应线性回归的目标尺寸预测
计算机视觉研究院专栏
作者:Edison_G
YOLOv2和YOLOv3是典型的基于深度学习的目标检测算法,它们使用统计自适应指数回归模型设计了网络的最后一层来预测目标的尺寸大小。
今天分享的是研究者提出了基于统计自适应线性回归的目标尺寸预测方法。YOLOv2和YOLOv3是典型的基于深度学习的对象检测算法,它们使用统计自适应指数回归模型设计了网络的最后一层来预测对象的尺寸大小。
然而,由于指数函数的性质,指数回归模型可以将损失函数的导数传播到网络中的所有参数中。研究者提出了统计自适应线性回归层来缓解指数回归模型的梯度爆炸问题。所提出的统计自适应线性回归模型用于网络的最后一层来预测从训练数据集的统计数据估计目标的尺寸大小。研究者新设计了基于YOLOv3tiny网络,它在UFPR-ALPR数据集上比YOLOv3有更高的性能。
往期推荐
🔗
目标检测干货 | 多级特征重复使用大幅度提升检测精度(文末附论文下载) SSD7-FFAM | 对嵌入式友好的目标检测网络,为幼儿园儿童的安全保驾护航 目标检测新方式 | class-agnostic检测器用于目标检测(附论文下载链接) 干货 | 利用手持摄像机图像通过卷积神经网络实时进行水稻检测(致敬袁老) CVPR 2021 | 不需要标注了?看自监督学习框架如何助力目标检测 目标检测 | 丰富特征导向Refinement Network用于目标检测(附github源码)
所提的方法使用学习数据集中的可估计统计数据来预测目标的宽度和高度,这与YOLOv2和YOLOv3相同。估计学习数据集统计值的过程如下: 根据学习数据集中存在目标的宽度和高度值,将目标分类为K个簇,然后估计每个簇中目标的宽度和高度值各自的算术均值。
研究者提出的统计值自适应线性回归模型进一步估计了各簇中目标的宽度和高度值的标准差。然后,设计了通过网络预测的目标的宽度和高度值的均值和标准差遵循学习数据集中存在的目标宽度和高度值的均值和标准差。利用学习数据集中的可估计统计值对预测值的统计值进行约束,可以使网络在学习阶段更加稳定,提高检测性能。
UFPR-ALPR dataset
The network architecture of newly designed YOLOv3 tiny for experiments
The comparison on UFPR-ALPR test dataset
© THE END
转载请联系本公众号获得授权
计算机视觉研究院学习群等你加入!
扫码关注
计算机视觉研究院
公众号ID|ComputerVisionGzq
学习群|扫码在主页获取加入方式
源码下载| 回复“OSP”获取下载