查看原文
其他

【数据蒋堂】第24期:非等值分组

2017-09-26 蒋步星 数据蒋堂

 前一期 【数据蒋堂】第23期:还原分组运算的本意

我们在上一期研究了分组运算的实质,即将一个集合按某种规则拆分成若干子集。不过,上期的关注重点在于还原分组运算的步骤,而没有讨论拆分规则,例子中都是用某些字段(或表达式)来定义拆分规则,也就是SQL中使用的方法。

我们把这种拆分方式称为等值分组。

等值分组在数学上的描述,相当于在一个集合上定义了一个等价关系:分组字段(表达式)相等的成员(记录)就认为等价。

等价关系是指满足如下条件的关系:

1)交换性,若a=b则b=a

2)传递性,若a=b,b=c则a=c

3)排他性,对任何a,b,a=b和a!=b有且只有一个成立

可以证明,任何等价关系一定能把原集合完全划分成若干个子集,每个子集中的成员互相等价。

完全划分具有这样的性质:

1)没有空子集

2)原集合的任何成员都属于且只属于某一个子集

考查等值分组,我们会发现它能够精确地满足等价关系的定义,因而等值分组的结果一定是完全划分。

有等值分组和完全划分,那是不是还有非等值分组和不完全划分?还有没有别的方式产生完全划分?这些是否有业务意义呢?

答案是肯定的。

比如我们要统计男女员工数量。我们可以写成这样:

SELECT gender,COUNT(*) FROM employee GROUP BY gender

但如果公司员工全是男性或女性,这个运算结果就只有一行了,那可能就不是我们想要的了。

为解决这个问题,我们可以设计这样一种分组方案:先罗列出一个基准集合,然后将待分组集合成员的某个属性(字段或表达式)与基准集合成员比较,相同者则分到一个子集中,最后拆分出来的子集数量和基准集合成员数是相同的。这种分组我们称为对位分组。

使用对位分组统计男女员工数量可以写成这样:

a=[男,女]                                       // 基准集合

g=employee.align(a,gender)    // 设计函数align实现对位分组,拆分集合

g.new(a(#),~.len())                   // 用分组子集计算汇总

可以想象,这种对位分组在日常统计中是很常见的,比如按地区、按部门统计,都可以事先把基准集合列出来,而且我们经常还要求结果集必须按基准集合的次序出现,而等值分组不能保证这个次序,还要再排序(排序时还是要提供这个基准集合,原集合成员属性中没有这个信息)。

对位分组可能出现空子集,它也不能保证任何原集合的成员都被拆到某个子集中(比如有些不重要的成员没有被列入基准集合),不过对位分组能保证每个成员最多只出现在一个子集中。

我们还能把对位分组推广成更一般的枚举分组。

枚举分组是指,事先指定一组条件,将待分组集合的成员作为参数计算这批条件,条件成立者都被划分到与该条件对应的一个子集中,结果集的子集和事先指定的条件一一对应。

比如,将员工按年龄段分组统计人数:

a=[?<=30,?<=40,?>40]         // 用?表示要代入的参数

g=employee.enum(a,age)    // 设计函数enum实现枚举分组,拆分集合

....

显然,枚举分组在日常业务中也是不少见的。

枚举分组和对位分组很象,都需要先列出一个基准集合,事实上,对位分组就是一种特殊的枚举分组。不过,不同的是,枚举分组可能制造出有重复成员的子集,也就是可重分组。

a=[?<=30,?>20 && ?<=40,?>50]      // 条件有重叠

g=employee.enum(a,age)

可重分组在实际业务中相对罕见一些,不过了解一下也有助于再次理解分组运算的实质。

表面上看,对位分组和枚举分组和SQL的GROUP BY差别很大,但理解了分组运算的本质后,就会明白它们其实是一回事:把某个集合拆分成若干子集。只是拆分的方法各有不同。

还有其它不完全依赖于成员属性的分组方式,但仍然是一种“把集合拆成子集”的方法,我们在后续文章会再提及。

还有一个问题,SQL只提供了等值分组,那会不会不够用呢?用SQL又是如何解决对位分组和枚举分组问题的?

其实SQL的运算能力是完备的,上述两种非等值分组都可以转换成等值分组,就是会麻烦一些。

对于对位分组,可以用基准集合和待分组集合做LEFT JOIN,对这个结果集再做GROUP BY就可以得到相同的效果。注意一定要用LEFT JOIN,用JOIN可能会失去空子集,用FULL JOIN又会多出基准集合之外的成员。枚举分组也是类似,但语句会更复杂些,要根据枚举条件去设计JOIN的条件,难以给出通用写法。


  正文结束  


 近期文章

【数据蒋堂】第23期:还原分组运算的本意

【数据蒋堂】第22期:有序遍历语法

【数据蒋堂】第21期:常规遍历语法

【数据蒋堂】第20期:从SQL语法看离散性

【数据蒋堂】第19期:从SQL语法看集合化

【数据蒋堂】第18期:SQL用作大数据计算语法好吗?

【数据蒋堂】第17期:SQL的困难源于关系代数

【数据蒋堂】第16期:SQL像英语是个善意的错误

    关于数据蒋堂    

《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。



蒋步星,清华大学计算机硕士,著有《非线性报表模型原理》等

1989年中国国际奥林匹克数学竞赛团体冠军成员,个人金牌

2000年创立润乾公司,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准。

2008年开始研发不依赖关系型数据的计算引擎,历经多个版本后,于2014年集算器正式发布。有效地提高了复杂结构化大数据计算的开发速度和运算效率。

2016年荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业 • 十大领军人物”。

2017年创办数据领域技术讲堂《数据蒋堂》,专注数据、每周一期。

2017年获得中国大数据产业生态大会评选的“2017年度中国数据大工匠”


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存