导读
上篇中,介绍了numpy的常用接口及使用,并对部分接口方法进行了详细对比。与之齐名,matplotlib作为数据科学的的另一必备库,算得上是python可视化领域的元老,更是很多高级可视化库的底层基础,其重要性不言而喻。
本篇对matplotlib进行系统性介绍,不会面面俱到,但求体系完备、详略得当。
行文目录结构,重点是右三分支
matplotlib是python的一个绘图库,与numpy、pandas共享数据科学三剑客的美誉,也是很多高级可视化库的基础。matplotlib不是python内置库,调用前需手动安装,且需依赖numpy库。截至当前,matplotlib发行版本号为3.2.1,适配python3.6及以上版本。
pyplot部分调用模块
前面说到,调用matplotlib库绘图一般是用pyplot子模块,其集成了绝大部分常用方法接口,查看pyplot源码文件可以发现,它内部调用了matplotlib路径下的大部分子模块(不是全部),共同完成各种丰富的绘图功能。其中有两个需要重点指出:figure和axes,其中前者为所有绘图操作定义了顶层类对象Figure,相当于是提供了画板;而后者则定义了画板中的每一个绘图对象Axes,相当于画板内的各个子图。换句话说,figure是axes的父容器,而axes是figure的内部元素,而我们常用的各种图表、图例、坐标轴等则又是axes的内部元素。
pylab导入的那些重量级模块
简单地讲,以后也不用import numpy 和 import matplotlib.pyplot了,直接import matplotlib.pylab就够了,毕竟它集成了二者的全部功能
pylab集成了numpy和pyplot全部功能
当了解pylab模块功能之后,才真正理解开发者的深谋远虑:原以为matplotlib的意思是"面向矩阵的绘图库",哪知其真正意义是"矩阵+绘图库",绘图只是它的一半。不过,也正因为pylab模块集成了过多的功能,直接调用并不是一个明智的选择,官方已不建议用其绘图。
注:按照惯例,本文后续多以plt作为matplotlib.pyplot别名使用。
pylab接口,如前所述,其引入了numpy和pyplot的所有接口,自然也可用于绘制图表,仍然可看做是pyplot接口形式。因其过于庞大官方不建议使用
plt接口和面向对象接口混合绘图
如果是简单的单图表绘制,或者是交互实验环境,则plt接口足以满足需要,且操作简单易用
如果是多图表绘制,需要相对复杂的图例配置和其他自定义设置,那么毫无疑问面向对象接口绘图是当之无愧的不二选择
需要指出,Axes从形式上是坐标轴axis一词的复数形式,但意义上却远非2个或多个坐标轴那么简单:如果将Figure比作是画板的话,那么Axes就是画板中的各个子图,这个子图提供了真正用于绘图的空间,除了包含纯粹的两个坐标轴(axes)外,自然还包括图形、图例等。所以准确的讲,如果说Axes和坐标轴有何关联的话,那么Axes应该算是广义的坐标轴,或简单称之为子图即可。
plt.subplots,主要接收一个行数nrows和列数ncols作为参数(不含第三个数字),创建一个figure对象和相应数量的axes对象,同时返回该figure对象和axes对象嵌套列表,并默认选择最后一个子图作为"当前"图
plt.subplots同时返回figure和axes实例
默认将最后一个axes子图作为"当前"图
imshow,显示图像,根据像素点数据完成绘图并显示
plot接口文档及部分参数
当然,各图表接口参数繁多且不尽一致,全部熟记几乎不现实,可仅记住常用参数及相关可选项,其他留作使用时查阅即可
text/arrow/annotation,分别在图例指定位置添加文字、箭头和标记,一般很少用
关于图例配置的官方解释
plt接口绘图中配置常用图例
对此,一方面两类接口虽然略有区别,但也还算有规律;另一方面,在面向对象绘图配置图例时,有更为便捷的设置图例接口axes.set(),其可以接收多种参数一次性完成所有配置,这也正是面向对象绘图的强大之处。
前面提到,figure为绘图创建了画板,而axes基于当前画板创建了1个或多个子图对象。为了创建各种形式的子图,matplotlib主要支持4种添加子图的方式。
常用的添加子图的方法莫过于subplot和subplots两个接口,其中前者用于一次添加一个子图,而后者则是创建一组子图。
应用plt.axes绘制多子图
通过axes绘制多子图,应对简单需求尚可,但面对复杂图表绘制时难免过于繁琐:需要手工计算各子图的原点位置和大小,意味着可能需要多次尝试。此时,可选的另一种绘制多子图的接口是plt.GridSpec。实际上,GridSpec只是对subplot接口的一个变形,本质上仍然是执行类似subplot多子图流程:通过切片将多子图合并,实现不规则多子图的绘制。与subplot、axes在面向对象和plt两类绘图接口间的区别类似,GridSpec在面向对象时的接口为add_gridspec()。
应用plt.GridSpec实现复杂多子图绘制
实际上,前述在配置图例过程中,每次绘制都需要进行大量自定义代码设置(这也是matplotlib的一个短板),在少量绘图工作时尚可接受,但在大量相似绘图存在重复操作时,仍然采取这一方法不会是一个明智的选择(虽然也可以简单的封装成一个函数)。
设置rcParams解决中文乱码的问题
设置seaborn绘图风格
在可视化愈发重要的当下,matplotlib当然不仅支持简单的2D图表绘制,其也提供了对3D绘图的丰富接口。
相关阅读:
Send to Author