查看原文
其他

单细胞数据质控-双细胞预测-scrublet使用教程

ahworld seqyuan 2022-06-07

在分析scRNA-seq数据之前,我们必须确保所有细胞barcode均与活细胞相对应。通常基于三个QC协变量执行细胞QC(Quality control):

1.每个barcode的数量2.每个barcode对应的基因数量3.每个barcode的数量中线粒体基因的占比

通过这些QC协变量的分布图,可以通过阈值过滤掉离群峰。

这些异常的barcodes对应着:

•死细胞•细胞膜破损的细胞•双细胞(doublets)

例如,barcodes计数深度低,检测到的基因很少且线粒体计数高,这表明细胞的细胞质mRNA已通过破膜渗出,因此,仅位于线粒体中的mRNA仍然在细胞内。相反,具有非预期高计数和检测到大量基因的细胞可能代表双细胞。

检测scRNA-seq中双细胞的分析鉴定工具总结了以下几种:

•scrublet[1] (python)•DoubletDetection[2] (python)•DoubletDecon[3] (R)•DoubletFinder[4] (R)

这些双细胞的分析鉴定工具在2019年发表的《单细胞数据分析最佳实践》中也有推荐(Luecken M D et al, 2019[5])

本期将对scrublet的使用做一个详细介绍

scrublet的使用

scrublet教程参考来源链接[6]见本文最后References

安装

scrublet为python语言编写的包,用以下pip命令安装就可以。

pip install scrublet

使用注意事项

处理来自多个样本的数据时,请分别对每个样本运行Scrublet。因为Scrublet旨在检测由两个细胞的随机共封装形成的technical doublets,所以在merged数据集上可能会表现不佳,因为细胞类型比例不代表任何单个样品;检查doublet score阈值是否合理,并在必要时进行手动调整。并不是所有情况向下doublet score的直方分布图都是呈现标准的双峰;UMAP或t-SNE可视化的结果中,预测的双细胞应该大体上共定位(可能在多个细胞群中)。如果不是,则可能需要调整doublet score阈值,或更改预处理参数以更好地解析数据中存在的细胞状态。

准备工作

数据准备

下载来自10X Genomics8k的PBMC数据集[7]并解压。

wget http://cf.10xgenomics.com/samples/cell-exp/2.1.0/pbmc8k/pbmc8k_filtered_gene_bc_matrices.tar.gztar xfz pbmc8k_filtered_gene_bc_matrices.tar.gz

numpy兼容性报错修复

高版本numpy带来的cannot import name '_validate_lenghs'报错修复方案

scrublet包的开发依赖的是比较低版本的numpy,会用到arraypad.py中的_validate_lenghs[8]函数,这个函数在比较高的numpy版本中已经弃用,如果安装的是高版本numpy,可能在运行scrublet时会有报错导致中断:cannot import name '_validate_lenghs'

考虑到一般其他软件包依赖高版本numpy的情况比较多,不想再降低numpy的版本,所以让scrublet能够运行下去的修复方案为如下:

打开终端,进入Python环境,输入以下代码,查看Python安装位置。

import sysprint(sys.path)

找到arraypad.py的位置 ~/anaconda3/lib/python3.6/site-packages/numpy/lib/arraypad.py,打开文件,在文件最后添加以下代码,保存退出,问题解决。

def _normalize_shape(ndarray, shape, cast_to_int=True): """ Private function which does some checks and normalizes the possibly much simpler representations of ‘pad_width‘, ‘stat_length‘, ‘constant_values‘, ‘end_values‘.
Parameters ---------- narray : ndarray Input ndarray shape : {sequence, array_like, float, int}, optional The width of padding (pad_width), the number of elements on the edge of the narray used for statistics (stat_length), the constant value(s) to use when filling padded regions (constant_values), or the endpoint target(s) for linear ramps (end_values). ((before_1, after_1), ... (before_N, after_N)) unique number of elements for each axis where `N` is rank of `narray`. ((before, after),) yields same before and after constants for each axis. (constant,) or val is a shortcut for before = after = constant for all axes. cast_to_int : bool, optional Controls if values in ``shape`` will be rounded and cast to int before being returned.
Returns ------- normalized_shape : tuple of tuples val => ((val, val), (val, val), ...) [[val1, val2], [val3, val4], ...] => ((val1, val2), (val3, val4), ...) ((val1, val2), (val3, val4), ...) => no change [[val1, val2], ] => ((val1, val2), (val1, val2), ...) ((val1, val2), ) => ((val1, val2), (val1, val2), ...) [[val , ], ] => ((val, val), (val, val), ...) ((val , ), ) => ((val, val), (val, val), ...)
""" ndims = ndarray.ndim
# Shortcut shape=None if shape is None: return ((None, None), ) * ndims
# Convert any input `info` to a NumPy array shape_arr = np.asarray(shape)
try: shape_arr = np.broadcast_to(shape_arr, (ndims, 2)) except ValueError: fmt = "Unable to create correctly shaped tuple from %s" raise ValueError(fmt % (shape,))
# Cast if necessary if cast_to_int is True: shape_arr = np.round(shape_arr).astype(int)
# Convert list of lists to tuple of tuples return tuple(tuple(axis) for axis in shape_arr.tolist())

def _validate_lengths(narray, number_elements): """ Private function which does some checks and reformats pad_width and stat_length using _normalize_shape.
Parameters ---------- narray : ndarray Input ndarray number_elements : {sequence, int}, optional The width of padding (pad_width) or the number of elements on the edge of the narray used for statistics (stat_length). ((before_1, after_1), ... (before_N, after_N)) unique number of elements for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes.
Returns ------- _validate_lengths : tuple of tuples int => ((int, int), (int, int), ...) [[int1, int2], [int3, int4], ...] => ((int1, int2), (int3, int4), ...) ((int1, int2), (int3, int4), ...) => no change [[int1, int2], ] => ((int1, int2), (int1, int2), ...) ((int1, int2), ) => ((int1, int2), (int1, int2), ...) [[int , ], ] => ((int, int), (int, int), ...) ((int , ), ) => ((int, int), (int, int), ...)
""" normshp = _normalize_shape(narray, number_elements) for i in normshp: chk = [1 if x is None else x for x in i] chk = [1 if x >= 0 else -1 for x in chk] if (chk[0] < 0) or (chk[1] < 0): fmt = "%s cannot contain negative values." raise ValueError(fmt % (number_elements,)) return normshp

scrublet使用教程


我的测试执行环境是MACOS jupyter notebook,以下代码为python包的载入和画图设置:

%matplotlib inlineimport scrublet as scrimport scipy.ioimport matplotlib.pyplot as pltimport numpy as npimport osimport pandas as pd
plt.rcParams['font.family'] = 'sans-serif'plt.rcParams['font.sans-serif'] = 'Arial'plt.rc('font', size=14)plt.rcParams['pdf.fonttype'] = 42

读入10X的scRNA-seq矩阵,读入raw counts矩阵为scipy sparse矩阵,cells作为行,genes作为列:

input_dir = '/Users/yuanzan/Desktop/doublets/filtered_gene_bc_matrices/GRCh38/'counts_matrix = scipy.io.mmread(input_dir + '/matrix.mtx').T.tocsc()genes = np.array(scr.load_genes(input_dir + '/genes.tsv', delimiter='\t', column=1))out_df = pd.read_csv(input_dir + '/barcodes.tsv', header = None, index_col=None, names=['barcode'])

print('Counts matrix shape: {} rows, {} columns'.format(counts_matrix.shape[0], counts_matrix.shape[1]))print('Number of genes in gene list: {}'.format(len(genes)))

Counts matrix shape: 8381 rows, 33694 columns Number of genes in gene list: 33694

初始化Scrublet对象

相关参数为:

expected_doublet_rate,doublets的预期占比,通常为0.05-0.1,结果对该参数不是特别敏感。对于此示例数据,预期的doublets占比来自Chromium用户指南[9]sim_doublet_ratio,要模拟的doublets数量相对于转录组的观测值的比例。此值应该足够高,以使所有的doublet状态都能很好地由模拟doublets表示。设置得太高会使计算量增大,默认值是2(尽管设置低至0.5的值也对测试的数据集产生非常相似的结果。n_neighbors,用于构造转录组观测值和模拟doublets的KNN分类器的邻居数。默认值为round(0.5 * sqrt(n_cells)),通常表现比较好。

scrub = scr.Scrublet(counts_matrix, expected_doublet_rate=0.06)

计算doublet score

运行下面的代码计算doublet score,内部处理过程包括:

1.Doublet simulation2.Normalization, gene filtering, rescaling, PCA3.Doublet score calculation4.Doublet score threshold detection and doublet calling

doublet_scores, predicted_doublets = scrub.scrub_doublets(min_counts=2, min_cells=3, min_gene_variability_pctl=85, n_prin_comps=30)

绘制doublet score分布直方图

Doublet score分布直方图包括观察到的转录组和模拟的doublet,模拟的doublet直方图通常是双峰的。

•下面左图模式对应于由具有相似基因表达的两个细胞产生的"embedded" doublets;右图模式对应"neotypic" doublets,由具有不同基因表达的细胞(例如,不同类型的细胞)产生,这些会在下游分析中引入更多的假象。Scrublet只能检测"neotypic" doublets

要call doublets vs. singlets,我们必须设置一个doublet score阈值,理想情况下,阈值应在模拟doublet直方图的两种模式之间设置最小值。scrub_doublets()函数尝试自动识别这一点,在这个测试数据示例中表现比较好。如果自动阈值检测效果不佳,则可以使用call_doublets()函数调整阈值,例如:

scrub.call_doublets(threshold=0.25)
# 画doublet score直方图scrub.plot_histogram()

降维可视化

降维计算

这个示例采用UMAP降维,还有tSNE可选,作者不推荐用tSNE,因为运行比较慢。

print('Running UMAP...')scrub.set_embedding('UMAP', scr.get_umap(scrub.manifold_obs_, 10, min_dist=0.3))print('Done.')

UMAP可视化

scrub.plot_embedding('UMAP', order_points=True)

下面左图黑色的点为预测的doublets。

# doublets占比print (scrub.detected_doublet_rate_)# 0.043789523923159525

把doublets预测结果保存到文件,后续用Seurat等软件处理的时候可以导入doublets的预测结果对barcode进行筛选。

out_df['doublet_scores'] = doublet_scoresout_df['predicted_doublets'] = predicted_doubletsout_df.to_csv(input_dir + '/doublet.txt', index=False,header=True)out_df.head()
barcodedoublet_scorespredicted_doublets
AAACCTGAGCATCATC-10.020232985898221900FALSE
AAACCTGAGCTAACTC-10.009746972531259230FALSE
AAACCTGAGCTAGTGG-10.013493253373313300FALSE
AAACCTGCACATTAGC-10.087378640776699FALSE
AAACCTGCACTGTTAG-10.02405046655276650FALSE
AAACCTGCATAGTAAG-10.03969184391224250FALSE
AAACCTGCATGAACCT-10.030082836796977200FALSE

此次测试的jupyter notebook上传到了我的github-seqyuan[10],有需要可以下载测试。

References

[1] scrublet: https://github.com/AllonKleinLab/scrublet
[2] DoubletDetection: https://github.com/JonathanShor/DoubletDetection
[3] DoubletDecon: https://github.com/EDePasquale/DoubletDecon
[4] DoubletFinder: https://github.com/chris-mcginnis-ucsf/DoubletFinder
[5] Luecken M D et al, 2019:  Luecken M D, Theis F J. Current best practices in single‐cell RNA‐seq analysis: a tutorial[J]. Molecular systems biology, 2019, 15(6).
[6] scrublet教程参考来源链接: https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb
[7] 10X Genomics8k的PBMC数据集: http://cf.10xgenomics.com/samples/cell-exp/2.1.0/pbmc8k/pbmc8k_filtered_gene_bc_matrices.tar.gz
[8] _validate_lenghs: https://www.cnblogs.com/lixiansheng/p/10293323.html
[9] Chromium用户指南: https://support.10xgenomics.com/permalink/3vzDu3zQjY0o2AqkkkI4CC
[10] seqyuan: https://github.com/seqyuan/blog/blob/master/images/scrublet/scrublet_basics.ipynb


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存