【学习】大白话解释模型产生过拟合的原因
点击上方“机器学习研究会”可以订阅哦
转自:自然语言处理与机器学习
过拟合的概念?
首先我们来解释一下过拟合的概念?
过拟合就是训练出来的模型在训练集上表现很好,但是在测试集上表现较差的一种现象!下图给出例子:
我们将上图第三个模型解释为出现了过拟合现象,过度的拟合了训练数据,而没有考虑到泛化能力。在训练集上的准确率和在开发集上的准确率画在一个图上如下:
从图中我们能够看出,模型在训练集上表现很好,但是在交叉验证集上表现先好后差。这也正是过拟合的特征!
发生过拟合的主要原因可以有以下三点:
(1)数据有噪声
(2)训练数据不足,有限的训练数据
(3)训练模型过度导致模型非常复杂
下面我将分别解释这三种情况(这里按自己的理解解释,欢迎大家交流):
(1)数据有噪声为什么数据有噪声,就可能导致模型出现过拟合现象呢?
所有的机器学习过程都是一个search假设空间的过程!我们是在模型参数空间搜索一组参数,使得我们的损失函数最小,也就是不断的接近我们的真实假设模型,而真实模型只有知道了所有的数据分布,才能得到。
往往我们的模型是在训练数据有限的情况下,找出使损失函数最小的最优模型,然后将该模型泛化于所有数据的其它部分。这是机器学习的本质!
那好,假设我们的总体数据如下图所示:
(我这里就假设总体数据分布满足一个线性模型y = kx+b,现实中肯定不会这么简单,数据量也不会这么少,至少也是多少亿级别,但是不影响解释。反正总体数据满足模型y)
此时我们得到的部分数据,其中还有噪声的话,如图所示:
(红色数据点为噪声)
那么由上面训练数据点训练出来的模型肯定不是线性模型(总体数据分布下满足的标准模型),比如训练出来的模型如下:
那么我拿着这个有噪声训练的模型,在训练集合上通过不断训练,可以做到损失函数值为0,但是拿着这个模型,到真实总体数据分布中(满足线性模型)去泛化,效果会非常差,因为你拿着一个非线性模型去预测线性模型的真实分布,显而易得效果是非常差的,也就产生了过拟合现象!
原文链接:
https://mp.weixin.qq.com/s/vus2mp2RhCL0kPamXVKnAg