其他
Elasticsearch快速入门,掌握这些刚刚好!
记得刚接触Elasticsearch的时候,没找啥资料,直接看了遍Elasticsearch的中文官方文档,中文文档很久没更新了,一直都是2.3的版本。最近又重新看了遍6.0的官方文档,由于官方文档介绍的内容比较多,每次看都很费力,所以这次整理了其中最常用部分,写下了这篇入门教程,希望对大家有所帮助。
简介
Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式的全文搜索引擎,基于restful web接口。Elasticsearch是用Java语言开发的,基于Apache协议的开源项目,是目前最受欢迎的企业搜索引擎。Elasticsearch广泛运用于云计算中,能够达到实时搜索,具有稳定,可靠,快速的特点。
安装
Windows下的安装
Elasticsearch
下载Elasticsearch 6.2.2的zip包,并解压到指定目录,下载地址:https://www.elastic.co/cn/downloads/past-releases/elasticsearch-6-2-2
安装中文分词插件,在elasticsearch-6.2.2\bin目录下执行以下命令;
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.2.2/elasticsearch-analysis-ik-6.2.2.zip
运行bin目录下的elasticsearch.bat启动Elasticsearch;
Kibana
下载Kibana,作为访问Elasticsearch的客户端,请下载6.2.2版本的zip包,并解压到指定目录,下载地址:https://artifacts.elastic.co/downloads/kibana/kibana-6.2.2-windows-x86_64.zip
运行bin目录下的kibana.bat,启动Kibana的用户界面
访问http://localhost:5601 即可打开Kibana的用户界面:
Linux下的安装
Elasticsearch
下载elasticsearch 6.4.0的docker镜像;
docker pull elasticsearch:6.4.0
修改虚拟内存区域大小,否则会因为过小而无法启动;
sysctl -w vm.max_map_count=262144
使用docker命令启动;
docker run -p 9200:9200 -p 9300:9300 --name elasticsearch \
-e "discovery.type=single-node" \
-e "cluster.name=elasticsearch" \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-d elasticsearch:6.4.0
启动时会发现 /usr/share/elasticsearch/data
目录没有访问权限,只需要修改该目录的权限,再重新启动即可;
chmod 777 /mydata/elasticsearch/data/
安装中文分词器IKAnalyzer,并重新启动;
docker exec -it elasticsearch /bin/bash
#此命令需要在容器中运行
elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.4.0/elasticsearch-analysis-ik-6.4.0.zip
docker restart elasticsearch
访问会返回版本信息:http://192.168.3.101:9200/
Kibina
下载kibana 6.4.0的docker镜像;
docker pull kibana:6.4.0
使用docker命令启动;
docker run --name kibana -p 5601:5601 \
--link elasticsearch:es \
-e "elasticsearch.hosts=http://es:9200" \
-d kibana:6.4.0
访问地址进行测试:http://192.168.3.101:5601
相关概念
Near Realtime(近实时):Elasticsearch是一个近乎实时的搜索平台,这意味着从索引文档到可搜索文档之间只有一个轻微的延迟(通常是一秒钟)。 Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。 Node(节点):节点是指属于集群的单个Elasticsearch实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为 elasticsearch
的群集。Index(索引):索引是一些具有相似特征的文档集合,类似于MySql中数据库的概念。 Type(类型):类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似MySql中表的概念。 注意
:在Elasticsearch 6.0.0及更高的版本中,一个索引只能包含一个类型。Document(文档):文档是可被索引的基本信息单位,以JSON形式表示,类似于MySql中行记录的概念。 Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。 Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。
集群状态查看
查看集群健康状态;
GET /_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1585552862 15:21:02 elasticsearch yellow 1 1 27 27 0 0 25 0 - 51.9%
查看节点状态;
GET /_cat/nodes?v
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
127.0.0.1 23 94 28 mdi * KFFjkpV
查看所有索引信息;
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
索引操作
创建索引并查看;
PUT /customer
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open customer 9uPjf94gSq-SJS6eOuJrHQ 5 1 0 0 460b 460b
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
删除索引并查看;
DELETE /customer
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open pms xlU0BjEoTrujDgeL6ENMPw 1 0 41 0 30.5kb 30.5kb
green open .kibana ljKQtJdwT9CnLrxbujdfWg 1 0 2 1 10.7kb 10.7kb
类型操作
查看文档的类型;
GET /bank/account/_mapping
{
"bank": {
"mappings": {
"account": {
"properties": {
"account_number": {
"type": "long"
},
"address": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"age": {
"type": "long"
},
"balance": {
"type": "long"
},
"city": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"email": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"employer": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"firstname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"gender": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"lastname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"state": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
}
}
文档操作
在索引中添加文档;
PUT /customer/doc/1
{
"name": "John Doe"
}
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 3,
"_primary_term": 1
}
查看索引中的文档;
GET /customer/doc/1
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"name": "John Doe"
}
}
修改索引中的文档:
POST /customer/doc/1/_update
{
"doc": { "name": "Jane Doe" }
}
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 4,
"_primary_term": 1
}
删除索引中的文档;
DELETE /customer/doc/1
{
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 3,
"result": "deleted",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 2,
"_primary_term": 1
}
对索引中的文档执行批量操作;
POST /customer/doc/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
{
"took": 45,
"errors": false,
"items": [
{
"index": {
"_index": "customer",
"_type": "doc",
"_id": "1",
"_version": 3,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 5,
"_primary_term": 1,
"status": 200
}
},
{
"index": {
"_index": "customer",
"_type": "doc",
"_id": "2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1,
"status": 201
}
}
]
}
数据搜索
查询表达式(Query DSL)是一种非常灵活又富有表现力的查询语言,Elasticsearch使用它可以以简单的JSON接口来实现丰富的搜索功能,下面的搜索操作都将使用它。
数据准备
首先我们需要导入一定量的数据用于搜索,使用的是银行账户表的例子,数据结构如下:
{
"account_number": 0,
"balance": 16623,
"firstname": "Bradshaw",
"lastname": "Mckenzie",
"age": 29,
"gender": "F",
"address": "244 Columbus Place",
"employer": "Euron",
"email": "bradshawmckenzie@euron.com",
"city": "Hobucken",
"state": "CO"
}
我们先复制下需要导入的数据,数据地址:https://github.com/macrozheng/mall-learning/blob/master/document/json/accounts.json
然后直接使用批量操作来导入数据,注意本文所有操作都在Kibana的Dev Tools中进行;
POST /bank/account/_bulk
{
"index": {
"_id": "1"
}
}
{
"account_number": 1,
"balance": 39225,
"firstname": "Amber",
"lastname": "Duke",
"age": 32,
"gender": "M",
"address": "880 Holmes Lane",
"employer": "Pyrami",
"email": "amberduke@pyrami.com",
"city": "Brogan",
"state": "IL"
}
......省略若干条数据
导入完成后查看索引信息,可以发现 bank
索引中已经创建了1000条文档。
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open bank HFjxDLNLRA-NATPKUQgjBw 5 1 1000 0 474.6kb 474.6kb
搜索入门
最简单的搜索,使用 match_all
来表示,例如搜索全部;
GET /bank/_search
{
"query": { "match_all": {} }
}
分页搜索, from
表示偏移量,从0开始,size
表示每页显示的数量;
GET /bank/_search
{
"query": { "match_all": {} },
"from": 0,
"size": 10
}
搜索排序,使用 sort
表示,例如按balance
字段降序排列;
GET /bank/_search
{
"query": { "match_all": {} },
"sort": { "balance": { "order": "desc" } }
}
搜索并返回指定字段内容,使用 _source
表示,例如只返回account_number
和balance
两个字段内容:
GET /bank/_search
{
"query": { "match_all": {} },
"_source": ["account_number", "balance"]
}
条件搜索
条件搜索,使用 match
表示匹配条件,例如搜索出account_number
为20
的文档:
GET /bank/_search
{
"query": {
"match": {
"account_number": 20
}
}
}
文本类型字段的条件搜索,例如搜索 address
字段中包含mill
的文档,对比上一条搜索可以发现,对于数值类型match
操作使用的是精确匹配,对于文本类型使用的是模糊匹配;
GET /bank/_search
{
"query": {
"match": {
"address": "mill"
}
},
"_source": [
"address",
"account_number"
]
}
短语匹配搜索,使用 match_phrase
表示,例如搜索address
字段中同时包含mill
和lane
的文档:
GET /bank/_search
{
"query": {
"match_phrase": {
"address": "mill lane"
}
}
}
组合搜索
组合搜索,使用 bool
来进行组合,must
表示同时满足,例如搜索address
字段中同时包含mill
和lane
的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
组合搜索, should
表示满足其中任意一个,搜索address
字段中包含mill
或者lane
的文档;
GET /bank/_search
{
"query": {
"bool": {
"should": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
组合搜索, must_not
表示同时不满足,例如搜索address
字段中不包含mill
且不包含lane
的文档;
GET /bank/_search
{
"query": {
"bool": {
"must_not": [
{ "match": { "address": "mill" } },
{ "match": { "address": "lane" } }
]
}
}
}
组合搜索,组合 must
和must_not
,例如搜索age
字段等于40
且state
字段不包含ID
的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": [
{ "match": { "age": "40" } }
],
"must_not": [
{ "match": { "state": "ID" } }
]
}
}
}
过滤搜索
搜索过滤,使用 filter
来表示,例如过滤出balance
字段在20000~30000
的文档;
GET /bank/_search
{
"query": {
"bool": {
"must": { "match_all": {} },
"filter": {
"range": {
"balance": {
"gte": 20000,
"lte": 30000
}
}
}
}
}
}
搜索聚合
对搜索结果进行聚合,使用 aggs
来表示,类似于MySql中的group by
,例如对state
字段进行聚合,统计出相同state
的文档数量;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
}
}
}
}
嵌套聚合,例如对 state
字段进行聚合,统计出相同state
的文档数量,再统计出balance
的平均值;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
对聚合搜索的结果进行排序,例如按 balance
的平均值降序排列;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword",
"order": {
"average_balance": "desc"
}
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
按字段值的范围进行分段聚合,例如分段范围为 age
字段的[20,30]
[30,40]
[40,50]
,之后按gender
统计文档个数和balance
的平均值;
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_age": {
"range": {
"field": "age",
"ranges": [
{
"from": 20,
"to": 30
},
{
"from": 30,
"to": 40
},
{
"from": 40,
"to": 50
}
]
},
"aggs": {
"group_by_gender": {
"terms": {
"field": "gender.keyword"
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
}
}
参考资料
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/getting-started.html
推荐阅读
瞬间几千次的重复提交,我用 SpringBoot+Redis 扛住了! 一口气说出9种分布式ID生成方式,面试官有点懵了! Docker环境下秒建Redis集群,连SpringBoot也整上了! Spring 和 SpringBoot 之间到底有啥区别? 书写高质量SQL的30条建议,这下够用了! 秒杀系统如何优雅、稳定地处理大量请求? 使用Redis+AOP优化权限管理功能,这波操作贼爽! Spring Data Redis 最佳实践! 一个不容错过的Spring Cloud实战项目! 我的Github开源项目,从0到20000 Star!
欢迎关注,点个在看