视频一键Roto真实现了??!!论文技术解析
击上方蓝字CG世界关注我们
“ 感知CG · 感触创意 · 感受艺术 · 感悟心灵 ”
中国很有影响力影视特效CG动画领域自媒体
AI修图,好像最早是PS推出的一个功能:内容感知。后来NVIDIA研究人员开发了一个更厉害的软件演示,可以说“一键修图”。在图上把不需要的物体只要抹一下,算法就会自动填补抹掉物体空白处,而且融合还相当可以。
▲点击图片可回看文章
后来很多小伙伴说,这只是图片,如果是视频那才真正的厉害。如果有这样的技术,Roto工作效率会大大提高。哎?这次真的来了。研究人员本着“只要你敢想,我就给你研发原则”真的做出来了。来,看动图!
这里要强调的是不仅仅扣除了人还要包括阴影区域,而且轮廓也要从镜头中消失。看见上图了么?就是这么Niubility!让我们看看其他一些例子。
如果单独修复一张图,这远远不是研究人员的追求,所以要换成视频也必须看起来非常完美才可以。
可是因为时间连贯性的要求,视频的处理是非常的难。针对这个问题自弗吉尼亚大学和Facebook的研究团队四位大佬Chen Gao, Ayush Saraf, Jia-Bin Huang和Johannes Kopf发表了一篇论文《Flow-edge Guided Video Completion》翻译过来应该是《光流边缘引导视频算法》。
论文介绍是这样说的:
“我们提出了一个新的基于光流的视频修复算法。之前的光流修复算法通常无法保持运动边界的锐度。我们的方法首先提取并完成运动边缘,然后利用运动边缘来引导具有锐边的分段光滑流补全。现有的方法在相邻帧之间的局部光流连接之间传播色彩。然而,并不是视频中所有缺失的区域都可以用这种方法进行恢复,因为运动的边界形成了不可逾越的障碍。我们的方法通过相隔较远的帧之间的全局光流(non-local flow)连接减轻了这个问题,允许在运动边界上传播视频内容。我们在DAVIS数据集验证了我们的方法,视觉和定量结果都表明,我们的方法优于最先进的算法。”
实现方法概述:
那过程到底是如实现的呢?喏,都在下面这张模型图里了。
上图中,绿色区域代表缺失部分;黄色、橙色和棕色线分别代表:第一个非局部帧、当前帧和第三个非局部帧的扫描线。
通过跟踪流动轨迹(黑色虚线)达到缺失区域的边缘,可以获得图中蓝色像素的局部候选对象。但由于人腿部运动形成的流动遮挡,计算红色像素点的候选像素就有些困难了。这里研究人员引入非相邻帧的非局部光流后,红色像素点就得到了额外的非局部领域(黄线和棕线上的红色像素点),然后就还原了被腿部遮挡的真实背景。
然后,再在梯度域中,使用置信加权平均值(A Confidence-weighted Average)将每个缺失像素的候选像素与有效候选像素进行融合以便重建颜色。
最后将整个过程不断迭代,并将结果传播到视频的其余部分,直到没有缺失像素为止。
内容参考:
项目地址:http://chengao.vision/FGVC/
论文地址:http://chengao.vision/FGVC/files/FGVC.pdf
视频解析地址:https://www.youtube.com/watch?v=CHHVPxHT7rc&t=41s
开源代码地址:https://github.com/vt-vl-lab/FGVC