查看原文
其他

【专知荟萃20】图像分割Image Segmentation知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

2017-11-20 专知内容组 专知

点击上方“专知”关注获取专业AI知识!

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢! 今天专知为大家呈送第二十篇专知主题荟萃-图像分割Image Segmentation知识资料大全集荟萃 (入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai,  或关注微信公众号后台回复" 专知"进入专知,搜索主题“图像分割”查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家分享转发~


  • 图像分割 (Image Segmentation) 专知荟萃

    • 入门学习

    • 进阶论文

    • 综述

    • Tutorial

    • 视频教程

    • 代码

    • Semantic segmentation

    • Instance aware segmentation

    • Satellite images segmentation

    • Video segmentation

    • Autonomous driving

    • Annotation Tools:

    • Datasets

    • 比赛

    • 领域专家


入门学习

  1. A 2017 Guide to Semantic Segmentation with Deep Learning 概述——用深度学习做语义分割

  • [http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]

  • 中文翻译:[http://simonduan.site/2017/07/23/notes-semantic-segmentation-deep-learning-review/]

  • 从全卷积网络到大型卷积核:深度学习的语义分割全指南

    • [https://www.jiqizhixin.com/articles/2017-07-14-10]

  • Fully Convolutional Networks

    • [http://simtalk.cn/2016/11/01/Fully-Convolutional-Networks/]

  • 语义分割中的深度学习方法全解:从FCN、SegNet到各代DeepLab

    • [https://zhuanlan.zhihu.com/p/27794982]

  • 图像语义分割之FCN和CRF

    • [https://zhuanlan.zhihu.com/p/22308032]

  • 从特斯拉到计算机视觉之「图像语义分割」

    • [http://www.52cs.org/?p=1089]

  • 计算机视觉之语义分割

    • [http://blog.geohey.com/ji-suan-ji-shi-jue-zhi-yu-yi-fen-ge/]

  • Segmentation Results: VOC2012 PASCAL语义分割比赛排名

    • [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]


    进阶论文

    1. U-Net [https://arxiv.org/pdf/1505.04597.pdf]

    2. SegNet [https://arxiv.org/pdf/1511.00561.pdf]

    3. DeepLab [https://arxiv.org/pdf/1606.00915.pdf]

    4. FCN [https://arxiv.org/pdf/1605.06211.pdf]

    5. ENet [https://arxiv.org/pdf/1606.02147.pdf]

    6. LinkNet [https://arxiv.org/pdf/1707.03718.pdf]

    7. DenseNet [https://arxiv.org/pdf/1608.06993.pdf]

    8. Tiramisu [https://arxiv.org/pdf/1611.09326.pdf]

    9. DilatedNet [https://arxiv.org/pdf/1511.07122.pdf]

    10. PixelNet [https://arxiv.org/pdf/1609.06694.pdf]

    11. ICNet [https://arxiv.org/pdf/1704.08545.pdf]

    12. ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf]

    13. RefineNet [https://arxiv.org/pdf/1611.06612.pdf]

    14. PSPNet [https://arxiv.org/pdf/1612.01105.pdf]

    15. CRFasRNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]

    16. Dilated convolution [https://arxiv.org/pdf/1511.07122.pdf]

    17. DeconvNet [https://arxiv.org/pdf/1505.04366.pdf]

    18. FRRN [https://arxiv.org/pdf/1611.08323.pdf]

    19. GCN [https://arxiv.org/pdf/1703.02719.pdf]

    20. DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf]

    21. Segaware [https://arxiv.org/pdf/1708.04607.pdf]

    22. Semantic Segmentation using Adversarial Networks [https://arxiv.org/pdf/1611.08408.pdf]



    综述

    1. A Review on Deep Learning Techniques Applied to Semantic Segmentation Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Jose Garcia-Rodriguez 2017

    • [https://arxiv.org/abs/1704.06857]

  • Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

    • [https://arxiv.org/abs/1704.05519]

  • 基于内容的图像分割方法综述 姜 枫 顾 庆 郝慧珍 李 娜 郭延文 陈道蓄 2017

    • [http://www.jos.org.cn/ch/reader/create_pdf.aspx?file_no=5136&journal_id=jos\]


    Tutorial

    1. Semantic Image Segmentation with Deep Learning

    • [http://www.robots.ox.ac.uk/~sadeep/files/crfasrnn_presentation.pdf\]

  • A 2017 Guide to Semantic Segmentation with Deep Learning

    • [http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review]

  • Image Segmentation with Tensorflow using CNNs and Conditional Random Fields

    • [http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/]


    视频教程

    1. CS231n: Convolutional Neural Networks for Visual Recognition Lecture 11 Detection and Segmentation 

    • [http://cs231n.stanford.edu/syllabus.html]

  • Machine Learning for Semantic Segmentation - Basics of Modern Image Analysis

    • [https://www.youtube.com/watch?v=psLChcm8aiU]


    代码

    Semantic segmentation

    1. U-Net (https://arxiv.org/pdf/1505.04597.pdf)

    • https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (Caffe - Matlab)

    • https://github.com/jocicmarko/ultrasound-nerve-segmentation (Keras)

    • https://github.com/EdwardTyantov/ultrasound-nerve-segmentation (Keras)

    • https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model (Keras)

    • https://github.com/yihui-he/u-net (Keras)

    • https://github.com/jakeret/tf_unet (Tensorflow)

    • https://github.com/DLTK/DLTK/blob/master/examples/Toy_segmentation/simple_dltk_unet.ipynb (Tensorflow)

    • https://github.com/divamgupta/image-segmentation-keras (Keras)

    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)

    • https://github.com/akirasosa/mobile-semantic-segmentation (Keras)

    • https://github.com/orobix/retina-unet (Keras)

  • SegNet (https://arxiv.org/pdf/1511.00561.pdf)

    • https://github.com/alexgkendall/caffe-segnet (Caffe)

    • https://github.com/developmentseed/caffe/tree/segnet-multi-gpu (Caffe)

    • https://github.com/preddy5/segnet (Keras)

    • https://github.com/imlab-uiip/keras-segnet (Keras)

    • https://github.com/andreaazzini/segnet (Tensorflow)

    • https://github.com/fedor-chervinskii/segnet-torch (Torch)

    • https://github.com/0bserver07/Keras-SegNet-Basic (Keras)

    • https://github.com/tkuanlun350/Tensorflow-SegNet (Tensorflow)

    • https://github.com/divamgupta/image-segmentation-keras (Keras)

    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)

    • https://github.com/chainer/chainercv/tree/master/examples/segnet (Chainer)

    • https://github.com/ykamikawa/keras-SegNet (Keras)

  • DeepLab (https://arxiv.org/pdf/1606.00915.pdf)

    • https://bitbucket.org/deeplab/deeplab-public/ (Caffe)

    • https://github.com/cdmh/deeplab-public (Caffe)

    • https://bitbucket.org/aquariusjay/deeplab-public-ver2 (Caffe)

    • https://github.com/TheLegendAli/DeepLab-Context (Caffe)

    • https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab (MXNet)

    • https://github.com/DrSleep/tensorflow-deeplab-resnet (Tensorflow)

    • https://github.com/muyang0320/tensorflow-deeplab-resnet-crf (TensorFlow)

    • https://github.com/isht7/pytorch-deeplab-resnet (PyTorch)

    • https://github.com/bermanmaxim/jaccardSegment (PyTorch)

    • https://github.com/martinkersner/train-DeepLab (Caffe)

    • https://github.com/chenxi116/TF-deeplab (Tensorflow)

  • FCN (https://arxiv.org/pdf/1605.06211.pdf)

    • https://github.com/vlfeat/matconvnet-fcn (MatConvNet)

    • https://github.com/shelhamer/fcn.berkeleyvision.org (Caffe)

    • https://github.com/MarvinTeichmann/tensorflow-fcn (Tensorflow)

    • https://github.com/aurora95/Keras-FCN (Keras)

    • https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras (Keras)

    • https://github.com/k3nt0w/FCN_via_keras (Keras)

    • https://github.com/shekkizh/FCN.tensorflow (Tensorflow)

    • https://github.com/seewalker/tf-pixelwise (Tensorflow)

    • https://github.com/divamgupta/image-segmentation-keras (Keras)

    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)

    • https://github.com/wkentaro/pytorch-fcn (PyTorch)

    • https://github.com/wkentaro/fcn (Chainer)

    • https://github.com/apache/incubator-mxnet/tree/master/example/fcn-xs (MxNet)

    • https://github.com/muyang0320/tf-fcn (Tensorflow)

    • https://github.com/ycszen/pytorch-seg (PyTorch)

    • https://github.com/Kaixhin/FCN-semantic-segmentation (PyTorch)

  • ENet (https://arxiv.org/pdf/1606.02147.pdf)

    • https://github.com/TimoSaemann/ENet (Caffe)

    • https://github.com/e-lab/ENet-training (Torch)

    • https://github.com/PavlosMelissinos/enet-keras (Keras)

  • LinkNet (https://arxiv.org/pdf/1707.03718.pdf)

    • https://github.com/e-lab/LinkNet (Torch)

  • DenseNet (https://arxiv.org/pdf/1608.06993.pdf)

    • https://github.com/flyyufelix/DenseNet-Keras (Keras)

  • Tiramisu (https://arxiv.org/pdf/1611.09326.pdf)

    • https://github.com/0bserver07/One-Hundred-Layers-Tiramisu (Keras)

    • https://github.com/SimJeg/FC-DenseNet (Lasagne)

  • DilatedNet (https://arxiv.org/pdf/1511.07122.pdf)

    • https://github.com/nicolov/segmentation_keras (Keras)

  • PixelNet (https://arxiv.org/pdf/1609.06694.pdf)

    • https://github.com/aayushbansal/PixelNet (Caffe)

  • ICNet (https://arxiv.org/pdf/1704.08545.pdf)

    • https://github.com/hszhao/ICNet (Caffe)

  • ERFNet (http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf)

    • https://github.com/Eromera/erfnet (Torch)

  • RefineNet (https://arxiv.org/pdf/1611.06612.pdf)

    • https://github.com/guosheng/refinenet (MatConvNet)

  • PSPNet (https://arxiv.org/pdf/1612.01105.pdf)

    • https://github.com/hszhao/PSPNet (Caffe)

    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)

    • https://github.com/mitmul/chainer-pspnet (Chainer)

    • https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow (Keras/Tensorflow)

    • https://github.com/pudae/tensorflow-pspnet (Tensorflow)

  • CRFasRNN (http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf)

    • https://github.com/torrvision/crfasrnn (Caffe)

    • https://github.com/sadeepj/crfasrnn_keras (Keras)

  • Dilated convolution (https://arxiv.org/pdf/1511.07122.pdf)

    • https://github.com/fyu/dilation (Caffe)

    • https://github.com/fyu/drn#semantic-image-segmentataion (PyTorch)

    • https://github.com/hangzhaomit/semantic-segmentation-pytorch (PyTorch)

  • DeconvNet (https://arxiv.org/pdf/1505.04366.pdf)

    • http://cvlab.postech.ac.kr/research/deconvnet/ (Caffe)

    • https://github.com/HyeonwooNoh/DeconvNet (Caffe)

    • https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation (Tensorflow)

  • FRRN (https://arxiv.org/pdf/1611.08323.pdf)

    • https://github.com/TobyPDE/FRRN (Lasagne)

  • GCN (https://arxiv.org/pdf/1703.02719.pdf)

    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)

    • https://github.com/ycszen/pytorch-seg (PyTorch)

  • DUC, HDC (https://arxiv.org/pdf/1702.08502.pdf)

    • https://github.com/ZijunDeng/pytorch-semantic-segmentation (PyTorch)

    • https://github.com/ycszen/pytorch-seg (PyTorch)

  • Segaware (https://arxiv.org/pdf/1708.04607.pdf)

    • https://github.com/aharley/segaware (Caffe)

  • Semantic Segmentation using Adversarial Networks (https://arxiv.org/pdf/1611.08408.pdf)

    • https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks (Chainer)


    Instance aware segmentation

    1. FCIS [https://arxiv.org/pdf/1611.07709.pdf]

    • https://github.com/msracver/FCIS [MxNet]

  • MNC [https://arxiv.org/pdf/1512.04412.pdf]

    • https://github.com/daijifeng001/MNC [Caffe]

  • DeepMask [https://arxiv.org/pdf/1506.06204.pdf]

    • https://github.com/facebookresearch/deepmask [Torch]

  • SharpMask [https://arxiv.org/pdf/1603.08695.pdf]

    • https://github.com/facebookresearch/deepmask [Torch]

  • Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]

    • https://github.com/CharlesShang/FastMaskRCNN [Tensorflow]

    • https://github.com/TuSimple/mx-maskrcnn [MxNet]

    • https://github.com/matterport/Mask_RCNN [Keras]

    1. https://github.com/jasjeetIM/Mask-RCNN [Caffe]

  • RIS [https://arxiv.org/pdf/1511.08250.pdf]

    • https://github.com/bernard24/RIS [Torch]

  • FastMask [https://arxiv.org/pdf/1612.08843.pdf]

    • https://github.com/voidrank/FastMask [Caffe]


    Satellite images segmentation

    • https://github.com/mshivaprakash/sat-seg-thesis

    • https://github.com/KGPML/Hyperspectral

    • https://github.com/lopuhin/kaggle-dstl

    • https://github.com/mitmul/ssai

    • https://github.com/mitmul/ssai-cnn

    • https://github.com/azavea/raster-vision

    • https://github.com/nshaud/DeepNetsForEO

    • https://github.com/trailbehind/DeepOSM


    Video segmentation

    • https://github.com/shelhamer/clockwork-fcn

    • https://github.com/JingchunCheng/Seg-with-SPN


    Autonomous driving

    • https://github.com/MarvinTeichmann/MultiNet

    • https://github.com/MarvinTeichmann/KittiSeg

    • https://github.com/vxy10/p5_VehicleDetection_Unet [Keras]

    • https://github.com/ndrplz/self-driving-car

    • https://github.com/mvirgo/MLND-Capstone


    Annotation Tools:

    • https://github.com/AKSHAYUBHAT/ImageSegmentation

    • https://github.com/kyamagu/js-segment-annotator

    • https://github.com/CSAILVision/LabelMeAnnotationTool

    • https://github.com/seanbell/opensurfaces-segmentation-ui

    • https://github.com/lzx1413/labelImgPlus

    • https://github.com/wkentaro/labelme


    Datasets

    1. Stanford Background Dataset[http://dags.stanford.edu/projects/scenedataset.html]

      1. Sift Flow Dataset[http://people.csail.mit.edu/celiu/SIFTflow/]

      2. Barcelona Dataset[http://www.cs.unc.edu/~jtighe/Papers/ECCV10/]

      3. Microsoft COCO dataset[http://mscoco.org/]

      4. MSRC Dataset[http://research.microsoft.com/en-us/projects/objectclassrecognition/]

      5. LITS Liver Tumor Segmentation Dataset[https://competitions.codalab.org/competitions/15595]

      6. KITTI[http://www.cvlibs.net/datasets/kitti/eval_road.php]

      7. Stanford background dataset[http://dags.stanford.edu/projects/scenedataset.html]

      8. Data from Games dataset[https://download.visinf.tu-darmstadt.de/data/from_games/]

      9. Human parsing dataset[https://github.com/lemondan/HumanParsing-Dataset]

      10. Silenko person database[https://github.com/Maxfashko/CamVid]

      11. Mapillary Vistas Dataset[https://www.mapillary.com/dataset/vistas]

      12. Microsoft AirSim[https://github.com/Microsoft/AirSim]

      13. MIT Scene Parsing Benchmark[http://sceneparsing.csail.mit.edu/]

      14. COCO 2017 Stuff Segmentation Challenge[http://cocodataset.org/#stuff-challenge2017]

      15. ADE20K Dataset[http://groups.csail.mit.edu/vision/datasets/ADE20K/]

      16. INRIA Annotations for Graz-02[http://lear.inrialpes.fr/people/marszalek/data/ig02/]


    比赛

    1. MSRC-21 [http://rodrigob.github.io/are_we_there_yet/build/semantic_labeling_datasets_results.html]

    2. Cityscapes [https://www.cityscapes-dataset.com/benchmarks/]

    3. VOC2012 [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6]


    领域专家

    1. Jonathan Long

    • [http://people.eecs.berkeley.edu/~jonlong/\]

  • Liang-Chieh Chen

    • [http://liangchiehchen.com/]

  • Hyeonwoo Noh

    • [http://cvlab.postech.ac.kr/~hyeonwoonoh/\]

  • Bharath Hariharan

    • [http://home.bharathh.info/]

  • Fisher Yu

    • [http://www.yf.io/]

  • Vijay Badrinarayanan

    • [https://sites.google.com/site/vijaybacademichomepage/home/papers]

  • Guosheng Lin

    • [https://sites.google.com/site/guoshenglin/]


    初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充(到专知网站www.zhuanzhi.ai 主题下评论),会一直保持更新,敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取最新AI相关知识。


    欢迎转发分享专业AI知识!


    特别提示-专知图像分割主题:

    请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录,顶端搜索“图像分割” 主题,查看评论获得专知荟萃全集知识等资料,直接PC端访问体验更佳!如下图所示~


    此外,请关注专知公众号(扫一扫最下面专知二维码,或者点击上方蓝色专知),

    • 后台回复“图像分割”或者“SEG” 就可以在手机端获取专知图像分割资料查看链接地址,直接打开荟萃资料的链接地址~~


    请扫描专知小助手,加入专知人工智能群交流~

    往期专知荟萃知识资料全集获取(关注本公众号-专知,获取下载链接),请查看:

    【专知荟萃01】深度学习知识资料大全集(入门/进阶/论文/代码/数据/综述/领域专家等)(附pdf下载)

    【专知荟萃02】自然语言处理NLP知识资料大全集(入门/进阶/论文/Toolkit/数据/综述/专家等)(附pdf下载)

    【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

    【专知荟萃04】自动问答QA知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

    【专知荟萃05】聊天机器人Chatbot知识资料全集(入门/进阶/论文/软件/数据/专家等)(附pdf下载)

    【专知荟萃06】计算机视觉CV知识资料大全集(入门/进阶/论文/课程/会议/专家等)(附pdf下载)

    【专知荟萃07】自动文摘AS知识资料全集(入门/进阶/代码/数据/专家等)(附pdf下载)

    【专知荟萃08】图像描述生成Image Caption知识资料全集(入门/进阶/论文/综述/视频/专家等)

    【专知荟萃09】目标检测知识资料全集(入门/进阶/论文/综述/视频/代码等)

    【专知荟萃10】推荐系统RS知识资料全集(入门/进阶/论文/综述/视频/代码等)

    【专知荟萃11】GAN生成式对抗网络知识资料全集(理论/报告/教程/综述/代码等)

    【专知荟萃12】信息检索 Information Retrieval 知识资料全集(入门/进阶/综述/代码/专家,附PDF下载)

    【专知荟萃13】工业学术界用户画像 User Profile 实用知识资料全集(入门/进阶/竞赛/论文/PPT,附PDF下载)

    【专知荟萃14】机器翻译 Machine Translation知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)

    【专知荟萃15】图像检索Image Retrieval知识资料全集(入门/进阶/综述/视频/代码/专家,附PDF下载)

    【专知荟萃16】主题模型Topic Model知识资料全集(基础/进阶/论文/综述/代码/专家,附PDF下载)

    【专知荟萃17】情感分析Sentiment Analysis 知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

    【专知荟萃18】目标跟踪Object Tracking知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

    【专知荟萃19】图像识别Image Recognition知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

    -END-

    欢迎使用专知

    专知,一个新的认知方式!专注在人工智能领域为AI从业者提供专业可信的知识分发服务, 包括主题定制、主题链路、搜索发现等服务,帮你又好又快找到所需知识。


    使用方法>>访问www.zhuanzhi.ai, 或点击文章下方“阅读原文”即可访问专知

    中国科学院自动化研究所专知团队

    @2017 专知

    专 · 知

    关注我们的公众号,获取最新关于专知以及人工智能的资讯、技术、算法、深度干货等内容。扫一扫下方关注我们的微信公众号。


    点击“阅读原文”,使用专知


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存