查看原文
其他

基于TensorFlow的机器学习速成课程25讲视频全集(04-06讲)

2018-04-16 专知内容组 专知

【导读】前些日子,大家都知道,Google 上线了基于 TensorFlow 的机器学习速成课程,它包含 40 多项练习、25 节课程以及 15 个小时的紧凑学习内容。 



基于TensorFlow的机器学习速成课程25讲视频全集(01-03讲)


本课程是机器学习热爱者的自学指南,且课程资料都是中文书写,课程视频都由机器学习技术转述为中文音频。这对于中文读者来说将会有很大的帮助,我们也能选择英文语音以更精确地学习内容。这曾是 Google 内部培训工程师的课程,有近万名 Google 员工参与并将学到的东西用在产品的优化和增强上。



课程网址:

https://developers.google.cn/machine-learning/crash-course

注:最低下角可点击切换到中文版


课程目录

机器学习概念

01-03讲:机器学习简介、框架处理、深入了解ML

04-06讲:降低损失、使用TF的基本步骤、泛化

07-09讲:训练集和测试集、验证、表示法

10-12讲:特征组合、简单正则化、逻辑回归

13-15讲:分类、稀疏性正则化、神经网络简介

16-18讲:训练神经网络、多类别神经网络、嵌套

机器学习工程

19-20讲:生产环境机器学习系统、静态与动态训练

21-22讲:静态与动态推理、数据依赖关系

应用示例

23-25讲:癌症预测、18世纪文字、应用准则


第四讲:降低损失

为了训练模型,我们需要一种可降低模型损失的好方法。迭代方法是一种广泛用于降低损失的方法,而且使用起来简单有效。

预计用时:5 分钟

学习目标

  • 了解如何使用迭代方法来训练模型。

  • 全面了解梯度下降法和一些变体,包括:

    小批量梯度下降法

    随机梯度下降法

  • 尝试不同的学习速率。

https://v.qq.com/txp/iframe/player.html?vid=v0564oegzyx&width=500&height=375&auto=0

第五讲:使用TensorFlow的基本步骤

预计用时:1 分钟

学习目标

  • 了解如何在 TensorFlow 中创建和修改张量。

  • 了解 Pandas 的基础知识。

  • 使用 TensorFlow 的一种高级 API 开发线性回归代码。

  • 尝试不同的学习速率。

https://v.qq.com/txp/iframe/player.html?vid=a0564j80cg6&width=500&height=375&auto=0

第六讲:泛化

泛化是指模型很好地拟合以前未见过的新数据(从用于创建该模型的同一分布中抽取)的能力。

预计用时:5 分钟

学习目标

  • 直观理解过拟合。

  • 确定某个模型是否出色。

  • 将数据集划分为训练集和测试集。

https://v.qq.com/txp/iframe/player.html?vid=h0564gkrpw1&width=500&height=375&auto=0

明天更新7~9讲,继续关注!


https://developers.google.cn/machine-learning/crash-course

-END-

专 · 知

人工智能领域主题知识资料查看获取【专知荟萃】人工智能领域26个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料

请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!

请加专知小助手微信(Rancho_Fang),加入专知主题人工智能群交流!加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

投稿&广告&商务合作:fangquanyi@gmail.com


点击“阅读原文”,使用专知

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存