全球首次,国际顶级医学杂志新英格兰医学杂志(IF=72)连发2篇文章,开启基因治疗新篇章
iNature:2018年4月19日,哈佛医学院Leboulch等研究组在新英格兰医学杂志发表题为“Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia”的研究论文,该研究论文用BB305载体转导的自体CD34 +细胞的基因治疗减少或消除了对22名患有严重β地中海贫血的患者长期红细胞输血的需要,而没有与药物产品相关的严重不良事件。 这也是为基因治疗拉开了新篇章,给基因治疗领域极大的鼓舞作用。由于这研究具有里程碑的意义,新英格兰医学杂志的给予了高度赞赏,出版了专门的点评文章。
包括β-地中海贫血和镰状细胞病在内的β血红蛋白病是全球最流行的单基因疾病之一。β地中海贫血是由HBB珠蛋白基因中的200多个突变引起的,它编码最常见的成人血红蛋白β亚基,HbA的形式【1】。这些突变或者消除(β0)或者减少(β+)β-珠蛋白合成,导致细胞内高铁血色原沉淀,无效的红细胞生成,慢性溶血和严重的贫血【2,3】。在这种疾病最严重的临床形式中,患者需要长期红细胞输注才能生存和预防严重并发症【4】。遗传变异型βE(HBB:c.79G→A)与任何β0基因突变导致βE/β0基因型,这是一种严重程度不等的疾病,全世界大约一半的输血依赖性β地中海贫血病例是由上述原因引起的。
β-地中海贫血的唯一潜在治愈选择是异基因造血细胞移植,但由于移植排斥,移植物抗宿主病和其他治疗相关毒性作用的风险。因此,目前的β-地中海贫血患者的护理标准包括终身的,常规的红细胞输注和铁螯合【9】。尽管输血相关铁毒性和病毒感染导致严重并发症的风险仍然存在因此,基因治疗正在被评估为β地中海贫血患者的新选择【12-15】。
慢病毒载体能够将复杂的遗传结构转移到静止的造血干细胞中【16】。在建立β-珠蛋白慢病毒载体成功校正了小鼠β地中海贫血和镰状细胞病模型后,Leboulch等研究组开始了一项人类临床研究,使用慢病毒载体进行β血红蛋白病的离体基因治疗(称为LG001研究)【19,20】,随后进行了其他研究【12-15】。Leboulch等研究组使用HPV569载体转移延伸的β-珠蛋白基因结构【18】,包括片段的人β-珠蛋白基因座编码区,导入从β-地中海贫血患者获得的造血干细胞中,并将基因修饰的细胞移植回患者体内【21,22】。载体编码的βA-T87Q-珠蛋白被改造成具有强烈抑制镰状细胞病患者中镰状血红蛋白聚合的单个氨基酸替代形式(T87Q),并且还允许在体内精确量化载体衍生的治疗性珠蛋白表达【23】,具有严重βE/β0基因型的患者在持续βA-T87Q-珠蛋白表达的情况下安全停止输注超过6年【13,20 】。
在这里,Leboulch等研究组报告了两个伴随1/2期临床研究的中期结果,这些研究使用LentiGlobin BB305载体评估基因治疗对β地中海贫血的安全性和有效性【13,24】,与之前的HPV569载体相似。在国际HGB-204(Northstar)的研究中,18名患者接受了BB305转导的自体造血干细胞的输注,随访范围从15到38个月不等。第二项研究HGB-205在巴黎的一个地点进行,治疗3例镰状细胞病和4例β地中海贫血患者【25】,随访范围从20个月至3年以上。Leboulch等研究组报告了迄今为止在这两项研究中接受治疗的所有22名β地中海贫血患者的结果。
Leboulch等研究组发现,输注基因修饰细胞后,中位数为26个月(范围15至42),13名非β0/β0基因型患者中的所有患者都停止接受红细胞输血; HbAT87Q的水平范围为3.4至10.0克/分升,总血红蛋白水平介于8.2至13.7克/分升。在血红蛋白水平接近正常范围的评估患者中,纠正了红细胞生成的生物学标记。 9例β0/β0基因型或IVS1-110突变两个拷贝的患者,年平均输血量减少73%,3例患者中止输注红细胞。与自体干细胞移植相关的治疗相关不良事件是典型的。未观察到与载体整合相关的克隆优势。
用BB305载体转导的自体CD34 +细胞的基因治疗减少或消除了对22名患有严重β地中海贫血的患者长期红细胞输血的需要,而没有与药物产品相关的严重不良事件。 (由Bluebird Bio等人资助; HGB-204和HGB-205 ClinicalTrials.gov编号,NCT01745120和NCT02151526。)
原文链接:
http://www.nejm.org/doi/full/10.1056/NEJMoa1705342?query=featured_home
http://www.nejm.org/doi/pdf/10.1056/NEJMe1802169
参考文章:
1.Piel FB. The present and future global burden of the inherited disorders of hemoglobin. Hematol Oncol Clin North Am 2016;30:327-41.
2. Cao A, Galanello R. Beta-thalassemia. Genet Med 2010;12:61-76.
3. Arlet JB, Ribeil JA, Guillem F, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature 2014;514:242-6. 4. Thein SL. Pathophysiology of beta thalassemia — a guide to molecular therapies. Hematology Am Soc Hematol Educ Program 2005;1:31-7.
5. Olivieri NF, Pakbaz Z, Vichinsky E. Hb E/beta-thalassaemia: a common & clinically diverse disorder. Indian J Med Res 2011;134:522-31.
6. Lucarelli G, Isgrò A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med 2012;2(5): a011825.
7. Locatelli F, Kabbara N, Ruggeri A, et al. Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLAidentical sibling. Blood 2013;122:1072-8.
8. Baronciani D, Angelucci E, Potschger U, et al. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000-2010. Bone Marrow Transplant 2016;51:536-41.
9. Engert A, Balduini C, Brand A, et al. The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica 2016;101:115-208.
10. Tubman VN, Fung EB, Vogiatzi M, et al. Guidelines for the standard monitoring of patients with thalassemia: report of the Thalassemia Longitudinal Cohort. J Pediatr Hematol Oncol 2015;37(3):e162-e169.
11. Bonifazi F, Conte R, Baiardi P, et al. Pattern of complications and burden of disease in patients affected by beta thalassemia major. Curr Med Res Opin 2017; 33:1525-33.
12. Malik P. Gene therapy for hemoglobinopathies: tremendous successes and remaining caveats. Mol Ther 2016;24:668-70.
13. Mansilla-Soto J, Riviere I, Boulad F, Sadelain M. Cell and gene therapy for the beta-thalassemias: advances and prospects. Hum Gene Ther 2016;27:295-304.
14. Negre O, Eggimann AV, Beuzard Y, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the β(A(T87Q))-globin gene. Hum Gene Ther 2016;27:148-65.
15. Ferrari G, Cavazzana M, Mavilio F. Gene therapy approaches to hemoglobinopathies. Hematol Oncol Clin North Am 2017;31:835-52.
16. Naldini L, Blömer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272:263-7. 17. May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in betathalassaemic mice expressing lentivirusencoded human beta-globin. Nature 2000; 406:82-6.
18. Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001;294:2368-71.
19. Bank A, Dorazio R, Leboulch P. A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci 2005;1054:308-16.
20. Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010;467: 318-22.
21. Tuan D, Solomon W, Li Q, London IM. The “beta-like-globin” gene domain in human erythroid cells. Proc Natl Acad Sci U S A 1985;82:6384-8.
22. Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 1987;51:975-85.
23. Takekoshi KJ, Oh YH, Westerman KW, London IM, Leboulch P. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease. Proc Natl Acad Sci U S A 1995;92:3014-8.
24. Negre O, Bartholomae C, Beuzard Y, et al. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr Gene Ther 2015; 15:64-81.
25. Ribeil JA, Hacein-Bey-Abina S, Payen E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med 2017;376:848- 55.
内容为【iNature】公众号原创,欢迎转载
白名单回复后台「转载」
微信加群
iNature组建了PI/顶级文章群,成员主要来源于中国科学院,浙江大学,北京大学,哈佛大学,MIT等学校的数百位PI, 汇聚了众多的青年千人,长江学者,杰出青年等200多位;里面包含了在Nature,Cell,Science,Nature Genetics,Cell Research等杂志发表文章的作者/PI,欢迎发表了高水平文章的作者/PI加入。iNature为你打造一个高质量的学术交流群,iNature与你一起扬帆起航。温馨提示:进群请备注一下(格式如学校+专业+姓名),谢谢。可以先加小编微信号(13701829856),或者是长按二维码,添加小编,之后再进群。
公众号热点推送回顾
重磅|3大CRISPR顶级大牛(张锋等人)发表5篇综述,阐述CRISPR机理及应用(满满的干货,值得收藏)
中国奇迹,短短一百天,连发6篇Nature Med(IF=29.88),但也引起了不小风波
重磅|5篇文章同时阐述DNA去甲基化酶的功能及CRISPR表观遗传编辑(Nature,Cell,NG,NC,PNAS)
Nature|蛰伏10年,中国农大张福锁院士等团队与千百万农民一起实现农业绿色增产增效
全球首次,Cell和PNAS同时撤稿,其原因居然是平时被忽略的这些小细节
首次,2篇Cell Research背靠背发表,揭示肿瘤免疫治疗新突破(同一作者,俩篇文章)
iNature,专注前沿科学动态,传递科普信息。关注请长按上方二维码。投稿、合作、转载授权事宜请联系微信ID:13701829856 或邮箱:liupan@sibs.ac.cn