其他
“12306”的架构到底有多牛逼?
作者 | 绘你一世倾城
来源 | https://juejin.im/post/5d84e21f6fb9a06ac8248149
每到节假日期间,一二线城市返乡、外出游玩的人们几乎都面临着一个问题:
抢火车票!
抢火车票!
抢火车票!
12306 抢票,极限并发带来的思考
大型高并发系统架构
负载均衡简介
轮询
加权轮询
IP Hash 轮询
Nginx 加权轮询的演示
upstream load_rule {
server 127.0.0.1:3001 weight=1;
server 127.0.0.1:3002 weight=2;
server 127.0.0.1:3003 weight=3;
server 127.0.0.1:3004 weight=4;
}
...
server {
listen 80;
server_name load_balance.com www.load_balance.com;
location / {
proxy_pass http://load_rule;
}
}
import (
"net/http"
"os"
"strings"
)
func main() {
http.HandleFunc("/buy/ticket", handleReq)
http.ListenAndServe(":3001", nil)
}
//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
failedMsg := "handle in port:"
writeLog(failedMsg, "./stat.log")
}
//写入日志
func writeLog(msg string, logPath string) {
fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
defer fd.Close()
content := strings.Join([]string{msg, "\r\n"}, "3001")
buf := []byte(content)
fd.Write(buf)
}
秒杀抢购系统选型
下单减库存
在极限并发情况下,任何一个内存操作的细节都至关影响性能,尤其像创建订单这种逻辑,一般都需要存储到磁盘数据库的,对数据库的压力是可想而知的。
如果用户存在恶意下单的情况,只下单不支付这样库存就会变少,会少卖很多订单,虽然服务端可以限制 IP 和用户的购买订单数量,这也不算是一个好方法。
支付减库存
预扣库存
扣库存的艺术
代码演示
初始化工作
//localSpike包结构体定义
package localSpike
type LocalSpike struct {
LocalInStock int64
LocalSalesVolume int64
}
...
//remoteSpike对hash结构的定义和redis连接池
package remoteSpike
//远程订单存储健值
type RemoteSpikeKeys struct {
SpikeOrderHashKey string //redis中秒杀订单hash结构key
TotalInventoryKey string //hash结构中总订单库存key
QuantityOfOrderKey string //hash结构中已有订单数量key
}
//初始化redis连接池
func NewPool() *redis.Pool {
return &redis.Pool{
MaxIdle: 10000,
MaxActive: 12000, // max number of connections
Dial: func() (redis.Conn, error) {
c, err := redis.Dial("tcp", ":6379")
if err != nil {
panic(err.Error())
}
return c, err
},
}
}
...
func init() {
localSpike = localSpike2.LocalSpike{
LocalInStock: 150,
LocalSalesVolume: 0,
}
remoteSpike = remoteSpike2.RemoteSpikeKeys{
SpikeOrderHashKey: "ticket_hash_key",
TotalInventoryKey: "ticket_total_nums",
QuantityOfOrderKey: "ticket_sold_nums",
}
redisPool = remoteSpike2.NewPool()
done = make(chan int, 1)
done <- 1
}
本地扣库存和统一扣库存
//本地扣库存,返回bool值
func (spike *LocalSpike) LocalDeductionStock() bool{
spike.LocalSalesVolume = spike.LocalSalesVolume + 1
return spike.LocalSalesVolume < spike.LocalInStock
}
......
const LuaScript = `
local ticket_key = KEYS[1]
local ticket_total_key = ARGV[1]
local ticket_sold_key = ARGV[2]
local ticket_total_nums = tonumber(redis.call('HGET', ticket_key, ticket_total_key))
local ticket_sold_nums = tonumber(redis.call('HGET', ticket_key, ticket_sold_key))
-- 查看是否还有余票,增加订单数量,返回结果值
if(ticket_total_nums >= ticket_sold_nums) then
return redis.call('HINCRBY', ticket_key, ticket_sold_key, 1)
end
return 0
`
//远端统一扣库存
func (RemoteSpikeKeys *RemoteSpikeKeys) RemoteDeductionStock(conn redis.Conn) bool {
lua := redis.NewScript(1, LuaScript)
result, err := redis.Int(lua.Do(conn, RemoteSpikeKeys.SpikeOrderHashKey, RemoteSpikeKeys.TotalInventoryKey, RemoteSpikeKeys.QuantityOfOrderKey))
if err != nil {
return false
}
return result != 0
}
响应用户信息
...
func main() {
http.HandleFunc("/buy/ticket", handleReq)
http.ListenAndServe(":3005", nil)
}
//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
redisConn := redisPool.Get()
LogMsg := ""
<-done
//全局读写锁
if localSpike.LocalDeductionStock() && remoteSpike.RemoteDeductionStock(redisConn) {
util.RespJson(w, 1, "抢票成功", nil)
LogMsg = LogMsg + "result:1,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
} else {
util.RespJson(w, -1, "已售罄", nil)
LogMsg = LogMsg + "result:0,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
}
done <- 1
//将抢票状态写入到log中
writeLog(LogMsg, "./stat.log")
}
func writeLog(msg string, logPath string) {
fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
defer fd.Close()
content := strings.Join([]string{msg, "\r\n"}, "")
buf := []byte(content)
fd.Write(buf)
}
单机服务压测
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/
Benchmarking 127.0.0.1 (be patient)
Completed 1000 requests
Completed 2000 requests
Completed 3000 requests
Completed 4000 requests
Completed 5000 requests
Completed 6000 requests
Completed 7000 requests
Completed 8000 requests
Completed 9000 requests
Completed 10000 requests
Finished 10000 requests
Server Software:
Server Hostname: 127.0.0.1
Server Port: 3005
Document Path: /buy/ticket
Document Length: 29 bytes
Concurrency Level: 100
Time taken for tests: 2.339 seconds
Complete requests: 10000
Failed requests: 0
Total transferred: 1370000 bytes
HTML transferred: 290000 bytes
Requests per second: 4275.96 [#/sec] (mean)
Time per request: 23.387 [ms] (mean)
Time per request: 0.234 [ms] (mean, across all concurrent requests)
Transfer rate: 572.08 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 0 8 14.7 6 223
Processing: 2 15 17.6 11 232
Waiting: 1 11 13.5 8 225
Total: 7 23 22.8 18 239
Percentage of the requests served within a certain time (ms)
50% 18
66% 24
75% 26
80% 28
90% 33
95% 39
98% 45
99% 54
100% 239 (longest request)
...
result:1,localSales:145
result:1,localSales:146
result:1,localSales:147
result:1,localSales:148
result:1,localSales:149
result:1,localSales:150
result:0,localSales:151
result:0,localSales:152
result:0,localSales:153
result:0,localSales:154
result:0,localSales:156
...
总结回顾