Detection of pesticides using nanozymes:
Trends, challenges and outlook
使用纳米酶检测农药:趋势、挑战和展望
Trends in Analytical Chemistry ( IF 12.296 )
Pub Date : 2021-09-21 , DOI: 10.1016/j.trac.2021.116429
Highlights
This review provides a critical overview of nanozyme sensors for the detection of pesticides.
The review highlights the breath of sensors developed using nanozymes.
Opportunities and challenges for future growth is summarized.
有效监测食品和环境样本中的农药残留是非常重要的,因为这些化学残留物正在进行生态和生物积累,危害人类和动物的健康。目前正在开发几个传感器平台,用于检测一系列样品矩阵中的农药残留。一种相对较新的传感器平台已经获得了巨大的关注,它是基于纳米材料的天然模拟酶催化活性,通常被称为纳米酶活性。本文综述了近年来基于纳米酶的农药检测技术的研究进展。本文综述了纳米酶传感器的主要特点和工作原理,它们与分子识别元件(MREs)的集成以提高目标的特异性,以及纳米酶传感器成为主流分析工具必须克服的相关限制。本文进一步展望了纳米酶传感器在农药检测中的应用前景。综述的最后一部分概述了必须采取的步骤,以实现基于纳米酶的传感器的全部潜力。
图1。基于纳米酶对天然酶催化活性的模拟的分类。最外面的圆圈列出了已报告给给定纳米酶的常见纳米材料。
Effective monitoring of pesticide residues in food and environmental samples is of high importance as these chemical residues undergo ongoing eco- and bio-accumulation, compromising the health of humans and animals alike. Several sensor platforms are being developed for the detection of pesticide residues in a range of sample matrices.
A relatively new sensor platform that has gained enormous attention is based on the natural enzyme-mimicking catalytic activity of nanomaterials, more commonly referred to as nanozyme activity. In this review, we provide a critical overview of the recent advances in nanozyme-based sensing strategies for the detection of pesticides. The review highlights the salient features and the working principle of various nanozyme-based sensors, their integration with molecular recognition elements (MREs) to improve target specificity, and associated limitations that must be overcome to turn nanozyme sensors into mainstream analytical tools. The review further provides a critical outlook of nanozyme-based sensors for pesticide detection. The last section of the review outlines the steps that must be taken to realise the full potential of nanozyme-based sensors.
图2。通过纳米酶抑制策略测定农药的不同模式的示意图。
基于农药可能直接对纳米酶或其催化活性产生的抑制作用。该方法提出了三种不同的机制,包括:
(i)农药与纳米酶表面原子之间的相互作用或吸附导致其催化活性丧失;(ii) 农药和纳米酶之间的相互作用导致纳米酶降解和 (iii) 农药氧化产物与纳米酶表面原子之间的相互作用导致催化活性丧失纳米酶。
你和SCI只差一个关注!爱岗敬业,脚踏实地任劳任怨,吃苦耐劳