查看原文
其他

8北师大版九下数学2.2 二次函数的图象与性质 知识点精讲

全心服务孩子👉 惠州好学生 2021-10-26


知识点总结

考点梳理

定义与定义表达式:

一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。


二次函数的三种表达式:

一般式:y=ax²+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b²2;)/4ax1,x2=(-b±√b²;-4ac)/2a

二次函数的图像:

在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。


抛物线的性质:

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P[-b/2a,(4ac-b²;)/4a]。

当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4ac<0时,抛物线与x轴没有交点。


二次函数与一元二次方程:

特别地,二次函数(以下称函数)y=ax²;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²;+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

画抛物线y=ax²时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。


二次函数解析式的几种形式:

1.一般式:y=ax²+bx+c(a,b,c为常数,a≠0).

2.顶点式:y=a(x-h)²+k(a,h,k为常数,a≠0).

3.两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax²+bx+c=0的两个根,a≠0.

说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)²+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)²的顶点在x轴上;当h=0且k=0时,抛物线y=ax²的顶点在原点。如果图像经过原点,并且对称轴是y轴,则设y=ax²;如果对称轴是y轴,但不过原点,则设y=ax²+k。


定义与定义表达式:

一般地,自变量x和因变量y之间存在如下关系:y=a+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数。


二次函数的三种表达式:

①一般式:y=ax²+bx+c(a,b,c为常数,a≠0)

②顶点式[抛物线的顶点P(h,k)]:y=a(x-h)²+k

③交点式[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]:y=a(x-x1)(x-x2)

以上3种形式可进行如下转化:

①一般式和顶点式的关系
对于二次函数y=ax²+bx+c,其顶点坐标为(-b/2a,(4ac-b²)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b²)/4a

②一般式和交点式的关系
X1,X2=[-b±√(b²-4ac)]/2a(即一元二次方程求根公式)

二次函数图像的性质:

1.二次函数(a0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。

(1)二次函数图像怎么画

作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。

(2)常用知识点及解题方法

1. a, b, c 与函数图像的关系
(1) a 决定抛物线的开口大小与方向, |a|决定抛物线开口大小。
a>0, 开口朝上;
a<0, 开口朝下。
|a|越大,开口越窄;
|a|越小, 开口越大。


图文导学



点击下方“阅读全文” 观看更多微课视频

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存