查看原文
其他

高通量测序技术的原理和应用——第二代测序技术

红皇后 红皇后学术 2022-06-07

第二代测序技术

高通量测序技术 (High-throughput sequencing, HTS) 是对传统Sanger测序技术革命性的变革,可以一次对几十万到几百万条核酸分子进行序列测定,因此也称其为下一代测序技术 (Next Generation Sequencing, NGS),高通量测序技术的出现使得对一个物种的转录组和基因组进行细致全貌的分析成为可能。

技术平台

经过科研人员的不断开发和改进,目前成熟的第二代测序技术共有3种,分别为Roche公司的454技术、ABI公司的SOLiD技术和Illumina公司的Solexa技术

Roche/454

该技术由Jonathan Rothberg于2005年发明,该技术是第一个被发明的二代测序技术,该技术引领生命科学的研究进入高通量测序时代。该技术的基本原理是:一个片段 = 一个磁珠 = 一条读长,DNA片段无需进行荧光标记,无需电泳,边合成变测序,碱基在加入到序列中时,会脱掉一个焦磷酸,通过检测焦磷酸识别碱基,因此也被称为焦磷酸测序

ABI/SOLiD

SOLiD技术是由连接酶测序法发展而来,Lerroy Hood在上世纪80年代中期利用连接酶法设计了第一台自动荧光测序仪。SOLiD以四色荧光标记寡核苷酸的连续连接合成为基础,取代了传统的聚合酶连接反应,可对单拷贝DNA片段进行大规模扩增和高通量并行测序

Illumina/Solexa

Illumina公司的第二代测序仪最早由Solexa公司研发,其同样为边合成边测序,该技术在测序的过程中,加入改造过的DNA聚合酶和带有4种荧光标记的dNTP,因为dNTP的3'羟基末端带有可化学切割的部分,它只容许每个循环掺入单个碱基,此时,用激光扫描反应板表面,根据dNTP所带的荧光读取每条模板序列每一轮反应所聚合上去的核苷酸种类,经过“合成-清洗-拍照”的循环过程,最终得到目的片段的碱基排列顺序。

技术原理

Roche/454

1. Preparation
454测序技术利用喷雾法将待测DNA打断成300-800bp长的小片段,并在片段两端加上不同的接头,或将待测DNA变性后用杂交引物进行PCR扩增,连接载体,构建单链DNA文库。

2. Emulsion PCR
在PCR反应前,将包含PCR所有反应成分的水溶液注入高速旋转的矿物油表面,形成被矿物油包裹的无数个小水滴,每一个小水滴即为一个独立的PCR反应空间,理想状态下,每一个小水滴只包含一个DNA模板和一个磁珠,磁珠表面含有与接头互补的DNA序列,经过PCR扩增后,磁珠上会富集大量序列相同的PCR产物,从而达到测序所需DNA量的要求。

3. Sequencing
测序时,需将磁珠固定在特制的PTP平板上。这种平板上含有许多直径约为44μm的小孔,每个小孔仅能容纳一个磁珠,通过这种方法来固定每个磁珠的位置。

启动测序反应后,每次向PTP平板中加入一种dNTP,如果能与待测序列配对,则会在碱基连接在模板上之后释放焦磷酸,焦磷酸通过ATP硫酸化学酶激活荧光素酶产生荧光,通过PTP板另一侧的CCD照相机记录荧光,从而确定目的模板的核酸序列。

ABI/SOLiD

SOLiD测序技术与454技术的原理比较类似,同样是采用油包水的方式进行Emulsion PCR。

不同之处在于SOLiD形成的小水滴要比454系统小得多,只有1μm大小,并且在PCR扩增的同时对扩增产物的3'端进行修饰,为下一步的测序做准备。

在PCR完成之后,SOLiD技术进行测序时,其反应底物不是dNTP也不是ddNTP,而含有8个碱基的单链荧光探针混合物,在测序时,这些探针按照碱基互补规则与单链DNA模板链配对,不同的探针的5'末端分别标记不同颜色的荧光染料,每两个碱基确定一个荧光信号,相当于一次能决定两个碱基,因此,这种测序方法也被称为两碱基测序法。

Illumina/Solexa

1. Preparation
通过不同的方法将打碎的DNA碎片末端连接序列已知的接头,构建单链DNA测序文库。

2. Immobilization and Bridge PCR
将测序文库的每一条单链DNA通过特异性的接头固定在一个固体支撑体上,固体支撑体的每一个单独小空间中只包含一条DNA链,之后通过PCR特异性的将模板DNA进行富集,从而达到测序所需的模板量。

3. Sequencing
对每一个单独的链进行碱基互补配对,反应试剂清洗和成像捕捉,不断反复进行此三步循环,每一个循环按顺序测定序列中的一个碱基。

第二代测序技术的优缺点

第二代测序技术的优点:

  1. 一次能够同时得到大量的序列数据,相比于一代测序技术,通量提高了成千上万倍

  2. 单条序列成本非常低廉


第二代测序技术的缺点:


  1. 序列读长较短,Illumina平台最长为250-300bp,454平台也只有500bp左右;

  2. 由于建库中利用了PCR富集序列,因此有一些含量较少的序列可能无法被大量扩增,造成一些信息的丢失,且PCR过程中有一定概率会引入错配碱基

  3. 想要得到准确和长度较长的拼接结果,需要测序的覆盖率较高,导致结果错误较多和成本增加

第二代测序技术的应用

二代测序是现阶段科研市场的主力平台,主要应用包括:基因组测序、转录组测序、群体测序、扩增子测序、宏基因组测序、重测序等。


由于成本较低,二代测序在医学领域应用也十分广泛,主要包括:癌症基因组、遗传病基因组、肿瘤与代谢疾病等。

不同测序平台的参数比较



图片来源:Shendure J, Ji, Hanlee. Next-generation DNA sequencing[J]. NATURE BIOTECHNOLOGY, 2008, 26(10):1135-1145.


写在后面:该篇文章并非完全原创,其中部分内容是多年前整理网络上相关文章而得,当时只是留作自学用途,但是由于时间较长,具体参考了那些文章已经忘记了,在此对这些文章的作者深表感谢!


高通量测序技术的基础简介

  • 基因测序技术的发展历史

  • 基因测序技术的原理和应用

  • 高通量测序技术的研究相关概念

    • 基因组研究相关名词解释

    • 转录调控研究相关名词解释

    • 微生物群落谱研究相关名词解释

    • 宏组学研究相关名词解释


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存