分享 | 双十一 Kafka+Flink+Redis 的电商大屏实时计算案例
前言
一年一度的双11马上就要到了,阿里的双11销量大屏可以说是一道特殊的风景线。酷炫的实时大屏(real-time dashboard)也正在被越来越多的企业采用,用来及时呈现关键的数据指标。并且在实际操作中,肯定也不会仅仅计算一两个维度。由于Flink的“真·流式计算”这一特点,它比Spark Streaming要更适合大屏应用。本文从笔者的实际工作经验抽象出简单的模型,并简要叙述计算流程(当然大部分都是源码)。
数据格式与接入
简化的子订单消息体如下:
{
"userId": 234567,
"orderId": 2902306918400,
"subOrderId": 2902306918401,
"siteId": 10219,
"siteName": "site_blabla",
"cityId": 101,
"cityName": "北京市",
"warehouseId": 636,
"merchandiseId": 187699,
"price": 299,
"quantity": 2,
"orderStatus": 1,
"isNewOrder": 0,
"timestamp": 1572963672217
}
由于订单可能会包含多种商品,故会被拆分成子订单来表示,每条JSON消息表示一个子订单。现在要按照自然日来统计以下指标,并以1秒的刷新频率呈现在大屏上:
每个站点(站点ID即siteId)的总订单数、子订单数、销量与GMV; 当前销量排名前N的商品(商品ID即merchandiseId)与它们的销量。
由于大屏的最大诉求是实时性,等待迟到数据显然不太现实,因此我们采用处理时间作为时间特征,并以1分钟的频率做checkpointing。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.enableCheckpointing(60 * 1000, CheckpointingMode.EXACTLY_ONCE);
env.getCheckpointConfig().setCheckpointTimeout(30 * 1000);
然后订阅Kafka的订单消息作为数据源
Properties consumerProps = ParameterUtil.getFromResourceFile("kafka.properties");
DataStream<String> sourceStream = env
.addSource(new FlinkKafkaConsumer011<>(
ORDER_EXT_TOPIC_NAME, // topic
new SimpleStringSchema(), // deserializer
consumerProps // consumer properties
))
.setParallelism(PARTITION_COUNT)
.name("source_kafka_" + ORDER_EXT_TOPIC_NAME)
.uid("source_kafka_" + ORDER_EXT_TOPIC_NAME);
给带状态的算子设定算子ID(通过调用uid()方法)是个好习惯,能够保证Flink应用从保存点重启时能够正确恢复状态现场。为了尽量稳妥,Flink官方也建议为每个算子都显式地设定ID,参考官方文档。
接下来将JSON数据转化为POJO,JSON框架采用FastJSON。
DataStream<SubOrderDetail> orderStream = sourceStream
.map(message -> JSON.parseObject(message, SubOrderDetail.class))
.name("map_sub_order_detail").uid("map_sub_order_detail");
JSON已经是预先处理好的标准化格式,所以POJO类SubOrderDetail的写法可以通过Lombok极大地简化。如果JSON的字段有不规范的,那么就需要手写Getter和Setter,并用@JSONField注解来指明。
@Getter
@Setter
@NoArgsConstructor
@AllArgsConstructor
@ToString
public class SubOrderDetail implements Serializable {
private static final long serialVersionUID = 1L;
private long userId;
private long orderId;
private long subOrderId;
private long siteId;
private String siteName;
private long cityId;
private String cityName;
private long warehouseId;
private long merchandiseId;
private long price;
private long quantity;
private int orderStatus;
private int isNewOrder;
private long timestamp;
}
统计站点指标
将子订单流按站点ID分组,开1天的滚动窗口,并同时设定ContinuousProcessingTimeTrigger触发器,以1秒周期触发计算。注意处理时间的时区问题,这是老生常谈了。
WindowedStream<SubOrderDetail, Tuple, TimeWindow> siteDayWindowStream = orderStream
.keyBy("siteId")
.window(TumblingProcessingTimeWindows.of(Time.days(1), Time.hours(-8)))
.trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(1)));
接下来写个聚合函数
DataStream<OrderAccumulator> siteAggStream = siteDayWindowStream
.aggregate(new OrderAndGmvAggregateFunc())
.name("aggregate_site_order_gmv").uid("aggregate_site_order_gmv");
public static final class OrderAndGmvAggregateFunc
implements AggregateFunction<SubOrderDetail, OrderAccumulator, OrderAccumulator> {
private static final long serialVersionUID = 1L;
@Override
public OrderAccumulator createAccumulator() {
return new OrderAccumulator();
}
@Override
public OrderAccumulator add(SubOrderDetail record, OrderAccumulator acc) {
if (acc.getSiteId() == 0) {
acc.setSiteId(record.getSiteId());
acc.setSiteName(record.getSiteName());
}
acc.addOrderId(record.getOrderId());
acc.addSubOrderSum(1);
acc.addQuantitySum(record.getQuantity());
acc.addGmv(record.getPrice() * record.getQuantity());
return acc;
}
@Override
public OrderAccumulator getResult(OrderAccumulator acc) {
return acc;
}
@Override
public OrderAccumulator merge(OrderAccumulator acc1, OrderAccumulator acc2) {
if (acc1.getSiteId() == 0) {
acc1.setSiteId(acc2.getSiteId());
acc1.setSiteName(acc2.getSiteName());
}
acc1.addOrderIds(acc2.getOrderIds());
acc1.addSubOrderSum(acc2.getSubOrderSum());
acc1.addQuantitySum(acc2.getQuantitySum());
acc1.addGmv(acc2.getGmv());
return acc1;
}
}
累加器类OrderAccumulator的实现很简单,看源码就大概知道它的结构了,因此不再多废话。唯一需要注意的是订单ID可能重复,所以需要用名为orderIds的HashSet来保存它。HashSet应付我们目前的数据规模还是没太大问题的,如果是海量数据,就考虑换用HyperLogLog吧。
接下来就该输出到Redis供呈现端查询了。这里有个问题:一秒内有数据变化的站点并不多,而ContinuousProcessingTimeTrigger每次触发都会输出窗口里全部的聚合数据,这样做了很多无用功,并且还会增大Redis的压力。所以,我们在聚合结果后再接一个ProcessFunction,代码如下:
DataStream<Tuple2<Long, String>> siteResultStream = siteAggStream
.keyBy(0)
.process(new OutputOrderGmvProcessFunc(), TypeInformation.of(new TypeHint<Tuple2<Long, String>>() {}))
.name("process_site_gmv_changed").uid("process_site_gmv_changed");
public static final class OutputOrderGmvProcessFunc
extends KeyedProcessFunction<Tuple, OrderAccumulator, Tuple2<Long, String>> {
private static final long serialVersionUID = 1L;
private MapState<Long, OrderAccumulator> state;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
state = this.getRuntimeContext().getMapState(new MapStateDescriptor<>(
"state_site_order_gmv",
Long.class,
OrderAccumulator.class)
);
}
@Override
public void processElement(OrderAccumulator value, Context ctx, Collector<Tuple2<Long, String>> out) throws Exception {
long key = value.getSiteId();
OrderAccumulator cachedValue = state.get(key);
if (cachedValue == null || value.getSubOrderSum() != cachedValue.getSubOrderSum()) {
JSONObject result = new JSONObject();
result.put("site_id", value.getSiteId());
result.put("site_name", value.getSiteName());
result.put("quantity", value.getQuantitySum());
result.put("orderCount", value.getOrderIds().size());
result.put("subOrderCount", value.getSubOrderSum());
result.put("gmv", value.getGmv());
out.collect(new Tuple2<>(key, result.toJSONString());
state.put(key, value);
}
}
@Override
public void close() throws Exception {
state.clear();
super.close();
}
}
说来也简单,就是用一个MapState状态缓存当前所有站点的聚合数据。由于数据源是以子订单为单位的,因此如果站点ID在MapState中没有缓存,或者缓存的子订单数与当前子订单数不一致,表示结果有更新,这样的数据才允许输出。
最后就可以安心地接上Redis Sink了,结果会被存进一个Hash结构里。
// 看官请自己构造合适的FlinkJedisPoolConfig
FlinkJedisPoolConfig jedisPoolConfig = ParameterUtil.getFlinkJedisPoolConfig(false, true);
siteResultStream
.addSink(new RedisSink<>(jedisPoolConfig, new GmvRedisMapper()))
.name("sink_redis_site_gmv").uid("sink_redis_site_gmv")
.setParallelism(1);
public static final class GmvRedisMapper implements RedisMapper<Tuple2<Long, String>> {
private static final long serialVersionUID = 1L;
private static final String HASH_NAME_PREFIX = "RT:DASHBOARD:GMV:";
@Override
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.HSET, HASH_NAME_PREFIX);
}
@Override
public String getKeyFromData(Tuple2<Long, String> data) {
return String.valueOf(data.f0);
}
@Override
public String getValueFromData(Tuple2<Long, String> data) {
return data.f1;
}
@Override
public Optional<String> getAdditionalKey(Tuple2<Long, String> data) {
return Optional.of(
HASH_NAME_PREFIX +
new LocalDateTime(System.currentTimeMillis()).toString(Consts.TIME_DAY_FORMAT) +
"SITES"
);
}
}
商品Top N
我们可以直接复用前面产生的orderStream,玩法与上面的GMV统计大同小异。这里用1秒滚动窗口就可以了。
WindowedStream<SubOrderDetail, Tuple, TimeWindow> merchandiseWindowStream = orderStream
.keyBy("merchandiseId")
.window(TumblingProcessingTimeWindows.of(Time.seconds(1)));
DataStream<Tuple2<Long, Long>> merchandiseRankStream = merchandiseWindowStream
.aggregate(new MerchandiseSalesAggregateFunc(), new MerchandiseSalesWindowFunc())
.name("aggregate_merch_sales").uid("aggregate_merch_sales")
.returns(TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() { }));
聚合函数与窗口函数的实现更加简单了,最终返回的是商品ID与商品销量的二元组。
public static final class MerchandiseSalesAggregateFunc
implements AggregateFunction<SubOrderDetail, Long, Long> {
private static final long serialVersionUID = 1L;
@Override
public Long createAccumulator() {
return 0L;
}
@Override
public Long add(SubOrderDetail value, Long acc) {
return acc + value.getQuantity();
}
@Override
public Long getResult(Long acc) {
return acc;
}
@Override
public Long merge(Long acc1, Long acc2) {
return acc1 + acc2;
}
}
public static final class MerchandiseSalesWindowFunc
implements WindowFunction<Long, Tuple2<Long, Long>, Tuple, TimeWindow> {
private static final long serialVersionUID = 1L;
@Override
public void apply(
Tuple key,
TimeWindow window,
Iterable<Long> accs,
Collector<Tuple2<Long, Long>> out) throws Exception {
long merchId = ((Tuple1<Long>) key).f0;
long acc = accs.iterator().next();
out.collect(new Tuple2<>(merchId, acc));
}
}
既然数据最终都要落到Redis,那么我们完全没必要在Flink端做Top N的统计,直接利用Redis的有序集合(zset)就行了,商品ID作为field,销量作为分数值,简单方便。不过flink-redis-connector项目中默认没有提供ZINCRBY命令的实现(必须再吐槽一次),我们可以自己加,步骤参照之前写过的那篇加SETEX的命令的文章,不再赘述。RedisMapper的写法如下。
public static final class RankingRedisMapper implements RedisMapper<Tuple2<Long, Long>> {
private static final long serialVersionUID = 1L;
private static final String ZSET_NAME_PREFIX = "RT:DASHBOARD:RANKING:";
@Override
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.ZINCRBY, ZSET_NAME_PREFIX);
}
@Override
public String getKeyFromData(Tuple2<Long, Long> data) {
return String.valueOf(data.f0);
}
@Override
public String getValueFromData(Tuple2<Long, Long> data) {
return String.valueOf(data.f1);
}
@Override
public Optional<String> getAdditionalKey(Tuple2<Long, Long> data) {
return Optional.of(
ZSET_NAME_PREFIX +
new LocalDateTime(System.currentTimeMillis()).toString(Consts.TIME_DAY_FORMAT) + ":" +
"MERCHANDISE"
);
}
}
后端取数时,用ZREVRANGE命令即可取出指定排名的数据了。只要数据规模不是大到难以接受,并且有现成的Redis,这个方案完全可以作为各类Top N需求的通用实现。
The End
大屏的实际呈现需要保密,截图自然是没有的。以下是提交执行时Flink Web UI给出的执行计划(实际有更多的统计任务,不止3个Sink)。通过复用源数据,可以在同一个Flink job内实现更多统计需求。