其他
苏教版六年级下册数学知识要点归纳丨可打印
梅学堂语数英学习资源免费领
梅学堂语数英学习资源免费领
领取电子版请拉到文末
领取电子版请拉到文末
小数【有限小数、无限小数】1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。3、小数点向右移动一位、两位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、两位、三位……原来的数分别缩小10倍、100倍、1000倍……4、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。5、小数的读法:读小数时,整数部分仍按照整数的读法来读,整数部分是“0”的读作“零”,小数点读作“点”,小数部分按从左往右的顺序读出每个数位上的数字,小数部分的0要读。6、小数的写法:写小数时,整数部分按照整数的写法去写,整数部分是0的写作“0”,小数点写在整数部分的右下角,小数部分顺次写出每一个数位上的数字。7、小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。8、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。9、比较小数大小的方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。10、求小数近似数的一般方法:(1)先要弄清保留几位小数;(2)根据需要确定看哪一位上的数;(3)用“四舍五入”的方法求得结果。
分数【真分数、假分数】1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。4、分数可以分为真分数和假分数。5、分子小于分母的分数叫做真分数。真分数小于1。6、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。分子是分母倍数的假分数实际上是整数。7、分子和分母只有公因数1的分数叫做最简分数。8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。9、应用分数的基本性质,可以通分和约分。约分:用分子和分母同时除以它们的最大公因数,化成最简分数的过程。通分: 根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程,叫做通分。10、倒数:乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。
百分数【税率、利息、折扣、成数】1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或2、分数与百分数比较:
3、折扣:在进行商品销售是,经常用到“打折扣”出售,简单说就是打折,几折就是十分之几,或用百分数百分之几十来表示。如:八折就是按原价的80%出售,六五折就是按原价的65%出售。原价×折扣=现价 现价÷原价=折扣 现价÷折扣=原价4、分数、小数、百分数的互化。(1)把分数化成小数,用分数的分子除以分母。(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约成最简分数。(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数,也就是百分号前保留一位小数),再把小数化成百分数。(6)把百分数化成分数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。5、求一个数比另一个数多(少)百分之几,就是求一个数比另一个数多(少)的占另一个数的百分之几。拿多或者少的部分÷单位“1” 6、利息=本金×利率×时间
因数与倍数【素数(质数)、合数、奇数、偶数】1、4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。2、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。3、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。4、5的倍数的特点:个位上的数是5或0。 2的倍数的特点:个位上的数是2、4、6、8或0。2的倍数都是偶数。 3的倍数的特点:各位上数的和一定是3的倍数。5、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。7、一个数,如果除了1和它本身之外还有别的因数,这样的数就叫做合数。8、在1—20这些数中: 素数:2、3、5、7、11、13、17、19。 合数:4、6、8、9、10、12、14、15、16、18、20。1既不是质数,也不是合数9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。10、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。11、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。12、公因数只有1的两个数有以下几种情况:(1)相邻的两个自然数(2)质数与质数(3)质数与合数(但合数不是质数的倍数)
(二)数的运算计算法则【整数、小数、分数】1、计算整数加、减法要把相同数位对齐,从低位算起。2、计算小数加、减法要把小数点对齐,从低位算起。3、小数乘法:(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。(2)注意:在积里点小数点时,位数不够的,要在前面用0补足。4、小数除法:(1)商的小数点要和被除数的小数点对齐;(2)有余数时,要在后面添0,继续往下除;(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。5、分数加、减法:(1)同分母分数相加减,把分子相加减,分母不变。(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。6、分数大小的比较:(1)同分母分数相比较,分子大的大,分子小的小。(2)异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。7、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。8、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
四则运算关系
(三)式与方程用字母表示数1、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。在省略数字与字母之间的乘号时,要把数字写在字母的前面。2、2a与a2意义不同:2a表示两个a相加,a2表示两个a相乘。即:2a=a+a,a2= a×a。3、用字母表示数:(1)用字母表示任意数:如X=4 a=6(2)用字母表示常见的数量关系:如s=vt(3)用字母表示运算定律:如a+b=b+a(4)用字母表示计算公式:S=ah方程与等式1、含有未知数的等式叫做方程。2、使方程左右两边相等的未知数的值,叫做方程的解。3、求方程的解的过程,叫做解方程。4、方程和等式的联系与区别:
2、比同分数、除法的联系与区别:
3、求比值与化简比的区别:
4、化简比:(1)整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。(2)小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。(3)分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。5、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。6、比例尺=图上距离︰实际距离正比例、反比例1、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。2、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 3、正比例与反比例的区别:
平面图形【认识、周长、面积】1、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。2、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。3、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。4、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。5、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。按边分,可以分为等边三角形、等腰三角形和任意三角形。7、三角形的内角和等于180度。8、在一个三角形中,任意两边之和大于第三边。9、在一个三角形中,最多只有一个直角或最多只有一个钝角。10、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。11、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。12、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。13、围成一个图形的所有边长的总和就是这个图形的周长。14、物体的表面或围成的平面图形的大小,叫做它们的面积。15、平面图形的面积计算公式推导:【1】平行四边形面积公式的推导过程? (1)把平行四边形通过剪切、平移可以转化成一个长方形。 (2)长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。 (3)因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。【2】三角形面积公式的推导过程?(1)用两个完全一样的三角形可以拼成一个平行四边形。 (2)平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半 (3)因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。 【3】梯形面积公式的推导过程? (1)用两个完全一样的梯形可以拼成一个平行四边形。 (2)平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。 (3)因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。【4】画图说明圆面积公式的推导过程 (1)把圆分成若干等份,剪开后,拼成了一个近似的长方形。(2)长方形的长相当于圆周长的一半,宽相当于圆的半径。(3)因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2。16、平面图形的周长和面积计算公式:
立体图形【认识、表面积、体积】1、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。2、圆柱的特征:一个侧面、两个底面、无数条高。3、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。4、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。5、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。6、圆柱和圆锥三种关系:(1)等底等高:体积1︰3(2)等底等体积:高1︰3(3)等高等体积:底面积1︰37、等底等高的圆柱和圆锥:(1)圆锥体积是圆柱的,(2)圆柱体积是圆锥的3倍,(3)圆锥体积比圆柱少,(4)圆柱体积比圆锥多2倍。8、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。9、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)(1)圆柱的侧面展开后一般得到一个长方形。 (2)长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。(3)因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。(4)圆柱的侧面展开后还可能得到一个正方形。正方形的边长=圆柱的底面周长=圆柱的高。 【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系? (1)把圆柱分成若干等份,切开后拼成了一个近似的长方体。(2)长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。(3)因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。【3】请画图说明圆锥体积公式的推导过程?(1)找来等底等高的空圆锥和空圆柱各一只。 (2)将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。 (3)通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=Sh。10、立体图形的棱长总和、表面积、体积计算公式:
(二)图形与变换1、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。2、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。3、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。
第三部分 统计与可能性(一)统计
1、我们通常都是通过打勾、画圆、划“正”字的方法进行数据的收集和整理。2、常见的统计图有条形统计图、折线统计图和扇形统计图三种。3、条形统计图的特点:从图中能清楚地看出各种数量的多少,便于比较。4、折线统计图的特点:不但能看出各种数量的多少,而且还能够清楚地表示出数量增减变化的趋势。5、扇形统计图的特点:表示各部分数量和总数量之间的关系(二)可能性1、
领取电子版方式
点击左下方【阅读原文】
关注后发送消息“数学知识点”
即可领取电子版打印
点击左下方【阅读原文】
关注后发送消息“数学知识点”
即可领取电子版打印