AB test | 数据分析师面试必知 !
前言
关于AB test的重要性无需多言,数据、产品等从业人员几乎必知,好的数据科学家我想一定是知道理解业务比模型更为重要,而AB test就是伴随着业务增长的利器。
如果你心中的AB test几乎都没有用到中心极限定理、假设检验、z分布、t分布等知识,建议详细阅读本文。
本文内容目录:
A/B test是什么
A/B test工作原理
进行A/B test的目的是什么
A/B test流程(面试喜欢问)
A/B test简例(结合Python实现)
A/B test需要注意的点
A/B test中要知道的统计学知识
1、A/B test是什么
A / B测试(也称为分割测试或桶测试)是一种将网页或应用程序的两个版本相互比较以确定哪个版本的性能更好的方法。AB测试本质上是一个实验,其中页面的两个或多个变体随机显示给用户,统计分析确定哪个变体对于给定的转换目标(指标如CTR)效果更好。
2、A/B test工作原理
在A / B test中,你可以设置访问网页或应用程序屏幕并对其进行修改以创建同一页面的第二个版本。这个更改可以像单个标题或按钮一样简单,也可以是完整的页面重新设计。然后,一半的流量显示页面的原始版本(称为控件),另一半显示页面的修改版本(称为变体)。
当用户访问页面时,如上图灰色按钮(控件)和箭头所指红色按钮(变体),利用埋点可以对用户点击行为数据采集,并通过统计引擎进行分析(进行A/B test)。然后,就可以确定这种更改(变体)对于给定的指标(这里是用户点击率CTR)产生正向影响,负向影响或无影响。
实验数据结果可能如下:
3、进行A/B test的目的是什么
A / B test可以让个人,团队和公司通过用户行为结果数据不断对其用户体验进行仔细更改。这允许他们构建假设,并更好地了解为什么修改的某些元素会影响用户行为。这些假设可能被证明是错误的,也就是说他们对特定目标的最佳体验的个人或团队想法利用A / B test证明对用户来说是行不通的,当然也可能证明是正确的。
一次测试一个变化有助于他们确定哪些变化对访问者的行为产生何种影响,哪些变化没有影响访问者的行为。随着时间的推移,他们可以结合实验中多次正向变化的效果来展示变体相对于控件的可测量的改进。
这样来说产品开发人员和设计人员可以使用A / B测试来演示新功能对用户体验变化的影响。只要目标明确定义并且有明确的假设,用户参与,产品体验等都可以通过A / B测试进行优化。
5、A/B test简例(结合Python实现)
实例背景简述:
某司「猜你想看」业务接入了的新推荐算法,新推荐策略算法开发完成后,在全流量上线之前要评估新推荐策略的优劣,所用的评估方法是A/B test,具体做法是在全量中抽样出两份小流量,分别走新推荐策略分支和旧推荐策略分支,通过对比这两份流量下的指标(这里按用户点击衡量)的差异,可以评估出新策略的优劣,进而决定新策略是否全适合全流量。
实例A/B test步骤:
指标:CTR
变体:新的推荐策略
假设:新的推荐策略可以带来更多的用户点击。
收集数据:以下B组数据为我们想验证的新的策略结果数据,A组数据为旧的策略结果数据。均为伪造数据。
分析结果(Python):
利用 python 中的 scipy.stats.ttest_ind 做关于两组数据的双边 t 检验,结果比较简单。但是做大于或者小于的单边检测的时候需要做一些处理,才能得到正确的结果。
from scipy import stats
import numpy as np
import numpy as np
import seaborn as sns
A = np.array([ 1, 4, 2, 3, 5, 5, 5, 7, 8, 9,10,18])
B = np.array([ 1, 2, 5, 6, 8, 10, 13, 14, 17, 20,13,8])
print('策略A的均值是:',np.mean(A))
print('策略B的均值是:',np.mean(B))
Output:
策略A的均值是:6.416666666666667
策略B的均值是:9.75
stats.ttest_ind(B,A,equal_var= False)
output:
Ttest_indResult(statistic=1.556783470104261, pvalue=0.13462981561745652)
<Data Pipeline For All learner>
<更多好文推荐>
现在的计算机专业已经沦为调包专业了吗?
数据科学精简版PDF,助力复盘你的DS知识圈!
长按上图,弹出“识别二维码”后关注
更多内容,咱们在看~