河南南阳收割机被堵事件:官员缺德,祸患无穷

极目新闻领导公开“记者毕节采访被打”细节:他们打人后擦去指纹

突发!员工跳楼!只拿低保工资!央企设计院集体罢工!

退休后的温家宝

突发!北京某院集体罢工!

生成图片,分享到微信朋友圈

自由微信安卓APP发布,立即下载! | 提交文章网址
查看原文

Pandas基础:列方向分组变形

小小明 凹凸数据 2022-05-28


小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。

刚才碰到一个非常简单的需求:

但是我发现大部分人在做这个题的时候,代码写的异常复杂。所以我建议你也不要直接看我的代码,而是先思考一下,你会怎么解决这个问题。

首先读取数据:

import pandas as pd

df = pd.read_excel("练习.xlsx", index_col=0)
df

结果:

为了后续处理方便,我将不需要参与分组的第一列事先设置为索引。

groupby分组相信大部分读者都使用过,但一直都是按行分组,不过groupby不仅可以按行分组,还可以按列进行分组

完整处理代码:

result = []
for year, split in df.groupby(df.columns.str[:4], axis=1):
    split.rename(columns=lambda s: s[5:], inplace=True)
    split.reset_index(inplace=True)
    split["年份"] = year
    result.append(split)
result = pd.concat(result, ignore_index=True)
result

结果:

可以看到,非常简单,仅8行以内的代码已经解决这个问题,剩下的只需在保存到excel时设置一下单元格格式即可,具体设置方法可以参考:Pandas指定样式保存excel数据的N种姿势

简单讲解一下吧:

df.columns.str[:4]

结果:

Index(['2018''2019''2020''2018''2019''2020'], dtype='object')

截取每列列名前4个字符,传入groupby即可作为分组依据,axis=1则指定了groupby按列进行分组而不是默认的按行分组。

split.rename(columns=lambda s: s[5:], inplace=True)

表示对分组后的结果去除列名的前5个字符。

split.reset_index(inplace=True)

表示还原索引为普通的列。

split["年份"] = year

将年份添加到后面单独的一列。

总之这个问题非常简单,相信大部分读者在看到代码后已经秒懂。



后台回复暗号「进群」,即刻加入读者交流群~


文章有问题?点此查看未经处理的缓存