突发!员工跳楼!只拿低保工资!央企设计院集体罢工!

突发!北京某院集体罢工!

淄博向东,惠泊向西:在人民与人民币之间,惠泊停车选择了人民币

【少儿禁】马建《亮出你的舌苔或空空荡荡》

10部适合女性看的唯美情色电影

生成图片,分享到微信朋友圈

自由微信安卓APP发布,立即下载! | 提交文章网址
查看原文

Pandas案例精进 | 结构化数据非等值范围查找 ②

小小明、朱小五 凹凸数据 2022-05-28

大家好,我是小五🐶

欢迎来到「Pandas案例精进」专栏,点击蓝字查看全部

前文回顾:Pandas案例精进 | 结构化数据非等值范围查找 ①

本文是承接上一篇的实战案例,没看过的小伙伴建议先点击👆上方链接查看前文

Pandas案例需求

需求如下:

该问题最核心的解题思路是按照地区代码先将两张表关联起来,然后按照重量是否在指定的区间筛选出符合条件的记录。不同的解法实际区别也是,如何进行表关联,如何进行关联后的过滤。

上文的简化写法

简化后:

import pandas as pd

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')

fi_cost = cost.set_index(['地区代码','地区缩写']).stack().reset_index()
result = pd.merge(product, fi_cost, on='地区代码', how='left')
result.columns = ['产品ID''地区代码''重量''地区缩写''重量区间''价格']
result[['最低区间''最高区间']] = result['重量区间'].str.split('~', expand=True).astype(float)
result.query("最低区间<=`重量`<=最高区间")

顺序查找匹配

考虑到直接merge会产生笛卡尔积,多消耗N倍的内存,所以下面采用筛选连接法,执行耗时比merge连接稍微长点,但减少了内存消耗。

首先读取数据:

import pandas as pd
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = 'all'

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')

预览数据:

product.head()
cost.head()

下面我们将价格表由"宽格式"旋转为"长格式"方便匹配:

fi_cost = cost.melt(id_vars=["地区代码""地区缩写"], var_name="重量区间", value_name='价格')
fi_cost

观察价格区间0~0.5, 0.501~1, 1.01~2, 2.01~3, 3.01~4, 4.01~5, 5.01~7, 7.01~10, 10.01~15, 15.01~100000我们完全可以只取前面的数字或只取后面的数字,理解为一个前闭后开或前开后闭的区间,我取重量区间的最大值来表示区间:

fi_cost.重量区间 = fi_cost.重量区间.str.split("~").str[1].astype("float")
fi_cost.sort_values(["地区代码""重量区间"], inplace=True, ignore_index=True)
fi_cost.head(10)

测试对第一个产品,取出对应的地区价格表:

fi_cost_g = fi_cost.groupby("地区代码")
for product_id, area_id, weight in product.values:
    print(product_id, area_id, weight)
    cost_table = fi_cost_g.get_group(area_id)
    display(cost_table)
    break

下面我们继续测试根据重量筛选出对应的价格:

fi_cost_g = fi_cost.groupby("地区代码")[["地区缩写""重量区间""价格"]]
for product_id, area_id, weight in product.values:
    print(product_id, area_id, weight)
    cost_table = fi_cost_g.get_group(area_id)
    display(cost_table)
    for area, weight_cost, price in cost_table.values:
        if weight <= weight_cost:
            print(area, price)
            break
    break

可以看到已经顺利的匹配出对应的价格是20.05。

于是完善最终代码为:

result = []
fi_cost_g = fi_cost.groupby("地区代码")[["地区缩写""重量区间""价格"]]
for product_id, area_id, weight in product.values:
    cost_table = fi_cost_g.get_group(area_id)
    for area, weight_cost, price in cost_table.values:
        if weight <= weight_cost:
            break
    result.append((product_id, area_id, area, weight, price))
result = pd.DataFrame(result, columns=["产品ID""地区代码""地区缩写""重量(kg)""价格"])
result

成功匹配出每个产品对应的地区简写和价格。

顺序查找匹配的完整代码为:

import pandas as pd

product = pd.read_excel('sample.xlsx', sheet_name='A')
cost = pd.read_excel('sample.xlsx', sheet_name='B')

fi_cost = cost.melt(id_vars=["地区代码""地区缩写"], var_name="重量区间", value_name='价格')
fi_cost.重量区间 = fi_cost.重量区间.str.split("~").str[1].astype("float")
fi_cost.sort_values(["地区代码""重量区间"], inplace=True, ignore_index=True)
result = []
fi_cost_g = fi_cost.groupby("地区代码")[["地区缩写""重量区间""价格"]]
for product_id, area_id, weight in product.values:
    cost_table = fi_cost_g.get_group(area_id)
    for area, weight_cost, price in cost_table.values:
        if weight <= weight_cost:
            break
    result.append((product_id, area_id, area, weight, price))
result = pd.DataFrame(result, columns=["产品ID""地区代码""地区缩写""重量(kg)""价格"])
result

小结

上述方法就已经解决了问题,考虑到上述区间查找其实是一个顺序查找的问题,所以我们还可以使用二分查找进一步优化减少查找次数!

原始需求和数据见👉Pandas案例精进 | 结构化数据非等值范围查找 ①


文章有问题?点此查看未经处理的缓存