数据资产管理4点经验心得
数据资产管理需要转变观念
数据治理是管控数据资产的一种有效的方法,但它需要被组织所重视。我发现有些企业建立了相应的管控机制,但是人们并不愿意按照预期的那样将精力投入到管理机制中。如果不努力创建高质量的数据,如果不提出数据质量问题,或者如果人们不愿意使用公认的数据源,则此机制将不起作用。这个机制取决于所做的努力,因此有效地实施数据管理需要转变观念。
二标准化是控制数据资产的重要组成部分
达成共识是有效利用数据资产的重要一步。庞大的组织规模和各种不同的业务活动为不同的工作方式和不同的术语提出了挑战。组织内部需要术语和定义的标准化,需要能够将数据资产联系在一起。就关键的数据资产定义达成一致是必要的,以便弥合业务和IT之间的术语鸿沟。确定共同的权威数据源是公认的高质量数据的关键。
三数据资产的价值是使用
数据资产管理最重要的是有人对数据负责。应该有人负责决定数据应该是什么样子,质量问题是如何解决的,以及它与其他数据集的关系。如果数据只是由组织中没有任何治理的人员使用,则不会有任何变化。数据资产认责是提高数据质量的第一步,也是最重要的一步,从长远来看,这意味着更好地使用数据。
四可追溯性是数据资产价值创造的关键
随着组织数据资产的规模越来越大,导致了不同的数据定义和源格式。再加上数据质量问题,很难将数据源彼此连接起来。连接数据源、可追溯性的能力可以转化为价值,例如,增加控制和启用高级分析。个人认为可追溯性和血缘关系并不是一回事,数据血缘主要描述单个数据源如何通过流程流进行转换,但数据可追溯性是指映射不同数据源之间的关系。数据血缘侧重于数据生命周期,而可追溯性描述了数据源相互引用的情况。
李然辉:1982年9月出生,从事IT行业14年以上,其中拥有数据治理及数据资产管理7年从业经验,有丰富的数据战略规划、数据管理能力成熟度评估、数据治理体系搭建、数据标准管理、企业数据模型设计、数据仓库构建与数据应用等领域的理论和实践经验,先后为政府、能源、金融、互联网等行业提供服务,近几年专注于数据资产价值评估领域研究。
(欢迎大家加入数据工匠知识星球获取更多资讯。)
联系我们
扫描二维码关注我们
微信:DaasCai
邮箱:ccjiu@163.com
QQ:3365722008
热门文章
浅谈数据治理、数据管理、数据资源与数据资产管理内涵及差异点(建议收藏)
我们的使命:发展数据治理行业、普及数据治理知识、改变企业数据管理现状、提高企业数据质量、推动企业走进大数据时代。
我们的愿景:打造数据治理专家、数据治理平台、数据治理生态圈。
我们的价值观:凝聚行业力量、打造数据治理全链条平台、改变数据治理生态圈。
了解更多精彩内容
长按,识别二维码,关注我们吧!
数据工匠俱乐部
微信号:zgsjgjjlb
专注数据治理,推动大数据发展。