数据运营与数据分析岗位差异点
The following article is from 木木自由 Author 木兮
【写在前面】想把这些年的工作对数据的理解、学习、感悟和经验,整理汇总出来,对自己的数据知识体系做个总结,希望对未来能有所帮助。所以,‘’数据说”应用而生,这里是运营与数据的相对碰撞,是数据闲话漫谈的之所,希望在这个大数据时代中,所有对数据感兴趣的小伙伴们有所帮助,在这片自留地,一起探索交流运营与数据的魅力所在。
数据运营与数据分析
我们对于数据运营与数据分析这两个岗位的界线,有些模糊,其实这两个岗位有着不同的差别也有着相同点,作为数据说的第一期开头,我们先一起来看看有何区别,又有何共同点?所以数据分析师的工作内容有:
①根据数据需求,提取数据,数据清洗②标注数据变化,发现异常③多维分析,交叉分析,查找异常原因④预测数据变化趋势及影响⑤生成策略,推动相关部门执行并复盘效果。
数据分析师的工具要求:
Excel/SQL/Python/R/Tableau/SAS等(不同公司对工具的要求会不同,具体可以查看JD要求,一般情况下是SQL+Python)。
以上就是数据运营与数据分析的闲谈,在工作上,运营想分析个数据,就用自己部门的人了,后来有数据分析师,需求就给数据分析师了,本质上数据运营要具备数据分析技能。
对数据能力的要求是互联网公司所有职位的需求趋势,对于未来的发展,我认为数据分析能力会变成运营岗位的刚性需求;与此同时数据分析会进阶成数据科学家,通过统计、机器学习来为各部门解决一些通用性的问题。
(欢迎大家加入数据工匠知识星球获取更多资讯。)
联系我们
扫描二维码关注我们
微信:DaasCai
邮箱:ccjiu@163.com
QQ:3365722008
热门文章
数字化人力资源分析:逻辑、数据、价值结构
我们的使命:发展数据治理行业、普及数据治理知识、改变企业数据管理现状、提高企业数据质量、推动企业走进大数据时代。
我们的愿景:打造数据治理专家、数据治理平台、数据治理生态圈。
我们的价值观:凝聚行业力量、打造数据治理全链条平台、改变数据治理生态圈。
了解更多精彩内容
长按,识别二维码,关注我们吧!
数据工匠俱乐部
微信号:zgsjgjjlb
专注数据治理,推动大数据发展。